Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p < 0.05) following the immunization and after challenging with Leishmania major. Interleukin 4 values were decreased in all immunized groups, but only in DNA vaccine cocktail and single-gene vaccination with pc-LACK there were statistical differences with control groups (p > 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1600-0463.2012.02968.x | DOI Listing |
Open Forum Infect Dis
January 2025
Global Tuberculosis Program, William T. Shearer Center for Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.
Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).
Front Immunol
January 2025
Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
Cancer is one of the leading causes of mortality around the world and most of our conventional treatments are not efficient enough to combat this deadly disease. Harnessing the power of the immune system to target cancer cells is one of the most appealing methods for cancer therapy. Nucleotide-based cancer vaccines, especially deoxyribonucleic acid (DNA) cancer vaccines are viable novel cancer treatments that have recently garnered significant attention.
View Article and Find Full Text PDFWorld J Hepatol
January 2025
Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8520, Japan.
Hepatitis B virus (HBV) infection causes acute and chronic hepatitis, compensated and decompensated cirrhosis, and hepatocellular carcinoma worldwide. The actual status of HBV infection and its treatment in certain regions of Asian and African countries, including Ethiopia, has not been well-documented thus far. Antiviral therapy for HBV infection can prevent the progression of HBV-related liver diseases and decrease the HBV-related symptoms, such as abdominal symptoms, fatigue, systemic symptoms and others.
View Article and Find Full Text PDFHum Vaccin Immunother
December 2025
Department of Thyroid and Breast Surgery, Jining NO. 1 People' Hospital, Jining, China.
This bibliometric and visualization study provides a comprehensive analysis of global research hotspots and trends in DNA vaccine research from 2014 to 2024. By employing data sourced from the Web of Science Core Collection, we identified a total of 3,600 articles. Our analysis reveals a declining trend in annual publications.
View Article and Find Full Text PDFInvest New Drugs
January 2025
School of Life Sciences, Jilin University, Changchun, China.
Due to the emergence of drug resistance, androgen receptor (AR)-targeted drugs still pose great challenges in the treatment of prostate cancer, and it is urgent to explore an innovative therapeutic strategy. MK-1775, a highly selective WEE1 inhibitor, is shown to have favorable therapeutic benefits in several solid tumor models. Recent evidence suggests that the combination of MK-1775 with DNA-damaging agents could lead to enhanced antitumor efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!