This report describes the discovery and optimization of a BACE-1 inhibitor series containing an unusual acyl guanidine chemotype that was originally synthesized as part of a 6041-membered solid-phase library. The synthesis of multiple follow-up solid- and solution-phase libraries facilitated the optimization of the original micromolar hit into a single-digit nanomolar BACE-1 inhibitor in both radioligand binding and cell-based functional assay formats. The X-ray structure of representative inhibitors bound to BACE-1 revealed a number of key ligand:protein interactions, including a hydrogen bond between the side chain amide of flap residue Gln73 and the acyl guanidine carbonyl group, and a cation-π interaction between Arg235 and the isothiazole 4-methoxyphenyl substituent. Following subcutaneous administration in rats, an acyl guanidine inhibitor with single-digit nanomolar activity in cells afforded good plasma exposures and a dose-dependent reduction in plasma Aβ levels, but poor brain exposure was observed (likely due to Pgp-mediated efflux), and significant reductions in brain Aβ levels were not obtained.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm300931y | DOI Listing |
Org Biomol Chem
January 2025
State Key Laboratory Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, China.
The cycloaddition of CO to epoxide (CCE) reactions produce valuable cyclic carbonates useful in the electrolytes of lithium-ion batteries, as organic solvents, and in polymeric materials. However, halide-containing catalysts are predominantly used in these reactions, despite halides being notoriously corrosive to steel processing equipment and residual halides also having harmful effects. To eliminate the reliance on halides as cocatalyst in most CCE reactions, halide-free catalysts are highly desirable.
View Article and Find Full Text PDFOrg Lett
June 2024
Institute of Biomedical Sciences and Graduate School of Pharmaceutical Sciences, Tokushima University, Tokushima 770-8505, Japan.
Late-stage formation of a sactionine thioether bond connecting a Gly α-carbon and Cys thiol was achieved by Lossen rearrangement of a glycyl hydroxamic acid (GlyHA) residue in a peptide. Lossen rearrangement allowed conversion of GlyHA within a peptide to an -acyl iminium equivalent, which subsequently reacted with -acetamidomethyl Cys (Cys(Acm)) in TFA in the presence of guanidine hydrochloride (Gn·HCl) to yield the desired thioether linkage in the final stage.
View Article and Find Full Text PDFInsect Biochem Mol Biol
July 2024
Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China. Electronic address:
Agmatine N-acetyltransferase (AgmNAT), which catalyzes the formation of N-acetylagmatine from acetyl-CoA and agmatine, is a member of the GCN5-related N-acetyltransferase family. So far, knowledge of the physiological roles of AgmNAT in insects is limited. Here, we identified one gene encoding protein homologous to that of Drosophila AgmNAT using sequence information from an activity-verified Drosophila AgmNAT in a BLAST search of the Bactrocera dorsalis genome.
View Article and Find Full Text PDFDiabetes Obes Metab
May 2024
School of Health Sciences, The University of Tasmania, Launceston, Tasmania, Australia.
Aim: Acyl-coenzyme A dehydrogenase family member 10 (ACAD10) is a mitochondrial protein purported to be involved in the fatty acid oxidation pathway. Metformin is the most prescribed therapy for type 2 diabetes; however, its precise mechanisms of action(s) are still being uncovered. Upregulation of ACAD10 is a requirement for metformin's ability to inhibit growth in cancer cells and extend lifespan in Caenorhabditis elegans.
View Article and Find Full Text PDFEur J Pharmacol
March 2024
School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, 241002, China. Electronic address:
Nonalcoholic fatty liver disease (NAFLD) is the primary complication of type 2 diabetes (T2DM)-related liver disease, lacking effective treatment options. Metformin (Met), a widely prescribed anti-hyperglycemic medication, has been found to protect against NAFLD. Ferroptosis, a newly discovered form of cell death, is associated with the development of NAFLD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!