At pharmacological doses, nicotinic acid has a lipid-regulating effect and is in use clinically for that purpose. However, despite of all features, its utility is strongly limited by several disadvantages such as, extensive hepatic metabolism and flushing. Transdermal delivery of nicotinic acid may, therefore, be the solution to reducing side effects associated with oral administration, and to maintaining constant therapeutic blood levels for longer duration. The aim of this investigation was to develop a suitable formulation or select a suitable vehicle for the transdermal delivery of highly lipophilic prodrugs of nicotinic acid (dodecyl and myristyl nicotinate) designed to deliver nicotinic acid through skin without causing vasodilatation and flushing and optimizing its delivery to the blood stream. A microemulsion system and penetration enhancers have been attempted in this study. The microemulsion system was composed of isopropyl myristate (IPM), water and a 4:1 (w/w) mixture of Labrasol and Peceol where a pseudoternary phase diagram was constructed. Furthermore, the microemulsion formulations with different component ratios were characterized by determination of conductivity, pH, particle size, viscosity and refractive index. According to the particle size analysis, conductivity and viscosity measurements, the microemulsion formulations that formed were of oil-in-water type. The transdermal permeability of nicotinic acid and its prodrugs was evaluated in vitro using Franz diffusion cells fitted with mice skin and nicotinic acid concentration was analyzed by high performance liquid chromatography. A theoretical design of percutaneous penetration optimization in which prodrugs derivation and enhancer application are combined based on the skin diffusion model was experimentally verified. The selected formulations seemed promising for developing a transdermal drug delivery system of nicotinic acid from dodecyl nicotinate that would offer advantages like possible controlled drug release, reduced flushing, increased drug stability and ease of large-scale production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10837450.2012.727003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!