Purpose: Long-lasting activation of glia occurs in brain during epileptogenesis, which develops after various central nervous system (CNS) injuries. Glia is the cell source of the biosynthesis and release of molecules that play a role in seizure recurrence and may contribute to epileptogenesis, thus representing a putative biomarker of epilepsy development and severity. In this study, we set up an in vivo longitudinal study using (1) H-magnetic resonance spectroscopy (MRS) to measure metabolite content in the rat hippocampus that could reflect the extent and the duration of glia activation. Our aim was to explore if glia activation during epileptogenesis, or in the chronic epileptic phase, can be used as a biomarker of tissue epileptogenicity (i.e., a measure of epilepsy severity).
Methods: (1) H-MRS measurements were done in the adult rat hippocampus every 24 h for 7 days after status epilepticus (SE) and in chronic epileptic rats, using a 7 T Bruker Biospec MRI (magnetic resonance imaging)/MRS scanner. We studied changes in metabolite levels that reflect astrocytes (myo-inositol, mIns; glutathione, GSH), microglia/macrophage activation and the associated neuronal cell injury/dysfunction (lactate, Lac; N-acetyl-aspartate, NAA). (1) H-MRS results were validated by post hoc immunohistochemistry using cell-specific markers. Data analysis was done to determine whether correlations exist between the metabolite changes and spontaneous seizure frequency or the extent of neuronal cell loss.
Key Findings: The analysis of (1) H-MRS spectra showed a progressive increase in mIns and GSH levels after SE, which was maintained in epileptic rats. Lac signal transiently increased during epileptogenesis being undetectable in chronic epileptic tissue. NAA levels were chronically reduced from day 2 post-SE. Immunohistochemistry confirmed the activation of microglia and astrocytes and the progressive neuronal cell loss. GSH levels during epileptogenesis showed a negative correlation with the frequency of spontaneous seizures, whereas S100β levels in epileptic tissue were positively correlated with this outcome measure. A negative correlation was also found between GSH or mIns levels during epileptogenesis and the extent of neurodegeneration in hippocampus of epileptic rats.
Significance: (1) H-MRS is a valuable in vivo technique for determining the extent and temporal profile of glia activation after an epileptogenic injury. S100β levels measured in the epileptic tissue may represent a biomarker of seizure frequency, whereas GSH levels during epileptogenesis could serve as a predictive marker of seizure frequency. Both mIns and GSH levels measured before the onset of spontaneous seizures predict the extent of neuronal cell loss in epileptic tissue. These findings highlight the potential of serial (1) H-MRS analysis for searching epilepsy biomarkers for prognostic, diagnostic, or therapeutic purposes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1528-1167.2012.03685.x | DOI Listing |
Inflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFNutrients
January 2025
Department of Management, Sapienza University of Rome, 00161 Rome, Italy.
Background/objectives: Inflammation and oxidative stress are the main pathogenetic pathways involved in the development of several chronic degenerative diseases. Our study is aimed at assessing the antioxidant and anti-inflammatory activity of hydroalcoholic extracts obtained from wheat and its derivatives.
Methods: The content of total phenolic and total flavonoid compounds and antioxidant activity were carried out by ABTS and DPPH assays.
Molecules
January 2025
Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Republic of Korea.
Inflammation has always been considered a trigger or consequence of neurodegenerative diseases, and the inhibition of inflammation in the central nervous system can effectively protect nerve cells. Several studies have indicated that various natural products inhibit neuroinflammation. Among these, Antarctic fungal metabolites have pharmacological activities and a developmental value.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Program in Neuroscience, Department of Biology, Syracuse University, Syracuse, NY 13210, USA.
Astrocytes produce and export glutathione (GSH), an important thiol antioxidant essential for protecting neural cells from oxidative stress and maintaining optimal brain health. While it has been established that oxidative stress increases GSH production in astrocytes, with Nrf2 acting as a critical transcription factor regulating key components of the GSH synthetic pathway, the role of Nrf2 in controlling constitutive GSH synthetic and release mechanisms remains incompletely investigated. Our data show that naïve primary mouse astrocytes cultured from the cerebral cortices of Nrf2 knockout (Nrf2) pups have significantly less intracellular and extracellular GSH levels when compared to astrocytes cultured from Nrf2 wild-type (Nrf2) pups.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia.
The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!