Adult stem cells are critical for the healing process in regenerative medicine. However, cigarette smoking inhibits stem cell recruitment to tissues and delays the wound-healing process. This study investigated the effect of nicotine, a major constituent in the cigarette smoke, on the regenerative potentials of human mesenchymal stem cells (MSC) and periodontal ligament-derived stem cells (PDLSC). The cell proliferation of 1.0 μM nicotine-treated MSC and PDLSC was significantly reduced when compared to the untreated control. Moreover, nicotine also retarded the locomotion of these adult stem cells. Furthermore, their osteogenic differentiation capabilities were reduced in the presence of nicotine as evidenced by gene expression (RUNX2, ALPL, BGLAP, COL1A1, and COL1A2), calcium deposition, and alkaline phosphatase activity analyses. In addition, the microRNA (miRNA) profile of nicotine-treated PDLSC was altered; suggesting miRNAs might play an important role in the nicotine effects on stem cells. This study provided the possible mechanistic explanations on stem cell-associated healing delay in cigarette smoking.

Download full-text PDF

Source
http://dx.doi.org/10.1089/scd.2012.0434DOI Listing

Publication Analysis

Top Keywords

stem cells
20
adult stem
12
stem
8
stem cell
8
cigarette smoking
8
nicotine
5
cells
5
nicotine alters
4
alters microrna
4
microrna expression
4

Similar Publications

Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.

Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.

View Article and Find Full Text PDF

Chinese Medicine Combined with Adipose Tissue-Derived Mesenchymal Stem Cells: A New Promising Aspect of Integrative Medicine.

Chin J Integr Med

January 2025

Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, 030619, China.

Adipose tissue-derived mesenchymal stem cells (ADSCs) are crucially involved in various biological processes because of their self-renewal, multi-differentiation, and immunomodulatory activities. Some ADSC's characteristics have been associated with the basic theory of Chinese medicine (CM), especially the Meridian theory. CM can improve the biological properties of ADSCs to facilitate their use in injury treatment, restore immune homeostasis, and inhibit inflammatory responses.

View Article and Find Full Text PDF

Retraction Note: P16 deletion ameliorated renal tubulointerstitial injury in a stress-induced premature senescence model of Bmi-1 deficiency.

Sci Rep

January 2025

The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!