The growth, yield, and carbon content of eight-month old seedlings of Pongamia pinnata were compared under water and urea supplementation. One set of plants were subjected to water stress condition (WS), whereas the other supplied with 2 g of urea (WS+U) under WS. Both the experimental set ups were exposed to varying treatment levels which include full irrigation (100%, control) followed by 75% (T1), 50% (T2), 25% (T3) and 12.5% (T4). The growth, leaf area and relative water content were maximum under WS when compared to WS+U (p < 0.001). The maximum biomass was produced in the seedlings under WS in control (1.68 g) followed by T1 (1.38 g), T2 (1.53 g), T3 (0.93 g) and T4 (0.73 g). A significant (p < 0.001) reduction in biomass production was observed in WS+U in control (1.28 g), T1 (0.66 g), T2 (1.13 g) and T3 (0.44 g). T4 of WS+U showed similar biomass (0.73 g) as that of T4 of WS. Under WS, the highest biomass allocation was recorded in shoots followed by leaves and roots. Similar trend was observed in WS+U. However, the percentage of allocation was more in the roots of WS+U (27.2%) when compared to WS (22.24 %). The highest amount of carbon content was observed in control plants treated under WS (9.59 g) followed by control plants of WS+U (7.31 g) (p < 0.001). The results of the preliminary study clearly indicated that P. pinnata seedlings were able to cope-up with water stress conditions without urea application and can perform well in 50% water availability and is best suited for the plantation programs in the semi-arid ecosystems.

Download full-text PDF

Source

Publication Analysis

Top Keywords

carbon content
12
water stress
12
growth yield
8
yield carbon
8
pongamia pinnata
8
urea supplementation
8
observed ws+u
8
control plants
8
ws+u
7
water
6

Similar Publications

Studies regarding geochemical partitioning and leaching behavior of Hofmeister ions, which is considered as a risk/causative factor for chronic kidney disease of unknown etiology (CKDu), are scarce. Therefore, Hofmeister ions' leaching behavior of partially weathered rocks from CKDu endemic (Girandurukotte) and non-endemic (Sewanagala) areas, Sri Lanka were compared. Rock mineralogy was analyzed using X-ray Diffraction, and total ion contents were determined using alkaline and acid digestions.

View Article and Find Full Text PDF

Silicon/carbon (Si/C) materials have achieved commercial applications as a solution to the problems of large volume expansion and short lifespan of silicon-based anodes in lithium-ion batteries. However, the potential risk of structural fracture and localized differences in surface adsorption properties lead to difficulties in maintaining the structural integrity of Si/C anodes using conventional binders during repeated lithiation/delithiation. Herein, an aqueous binder (PVA-g-M) based on polyvinyl alcohol (PVA) grafted methacrylic acid (MAA) obtained by self-emulsifyingemulsion polymerization is reported.

View Article and Find Full Text PDF

The results of a comprehensive investigation into the structure and properties of nanodiamond soot (NDS), obtained from the detonation of various explosive precursors (trinitrotoluene, a trinitrotoluene/hexogen mixture, and tetryl), are presented. The colloidal behavior of the NDS particles in different liquid media was studied. The results of the scanning electron microscopy, dynamic light scattering, zeta potential measurements, and laser diffraction analysis suggested a similarity in the morphology of the NDS particle aggregates and agglomerates.

View Article and Find Full Text PDF

The electrochemical conversion of CO into high value-added carbon materials by molten salt electrolysis offers a promising solution for reducing carbon dioxide emissions. This study focuses on investigating the influence of molten salt composition on the structure of CO direct electroreduction carbon products in chloride molten salt systems. Using CaO as a CO absorber, the adsorption principle of CO in LiCl-CaCl, LiCl-CaCl-NaCl and LiCl-CaCl-KCl molten salts was discussed, and the reasons for the different morphologies and structures of carbon products were analyzed, and it was found that the electrolytic efficiency of the whole process exceeded 85%.

View Article and Find Full Text PDF

A Scanning Photoelectron Microscopy (SPEM) experiment has been applied to ZnO:N films deposited by Atomic Layer Deposition (ALD) under O-rich conditions and post-growth annealed in oxygen at 800 °C. spatial resolution (130 nm) allows for probing the electronic structure of single column of growth. The samples were cleaved under ultra-high vacuum (UHV) conditions to open atomically clean cross-sectional areas for SPEM experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!