The catalytic activity of L-aspartate α-decarboxylase (ADC) is essential for the growth of several micro-organisms, including Mycobacterium tuberculosis (Mtb), and has triggered efforts for the development of pharmaceutically active compounds against tuberculosis. The present study is a continuation of our recent chemoinformatics-based design approach for identifying potential drug-like inhibitors against MtbADC. We report an NMR-based protocol that allows label-free and direct monitoring of enzymatic conversion, which we have combined with a systematic testing of reported and newly identified potential inhibitors against MtbADC. Quantification of enzymatic conversion in the absence and presence of inhibitors allowed for a relative measure of the inhibitory effect (k(rel)). Among the newly identified compounds, D-tartrate, L-tartrate, and 2,4-dihydroxypyrimidine-5-carboxylate were found to inhibit the enzyme with k(rel) values of 0.36, 0.38, and 0.54, respectively. In addition to the identification of potential building blocks for the development of therapeutic agents, the current study highlights the importance of electrostatic interactions governing enzyme-inhibitor binding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461031PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045947PLOS

Publication Analysis

Top Keywords

drug-like inhibitors
8
mycobacterium tuberculosis
8
l-aspartate α-decarboxylase
8
inhibitors mtbadc
8
enzymatic conversion
8
newly identified
8
validation drug-like
4
inhibitors
4
inhibitors mycobacterium
4
tuberculosis l-aspartate
4

Similar Publications

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing.

View Article and Find Full Text PDF

Design, Synthesis, and Evaluation of Trihalomethyl Ketone Derivatives of Neocarzilin A as Improved Antimetastatic Agents.

ACS Bio Med Chem Au

December 2024

Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States.

Vesicle Amine Transport-1 (VAT1) is a protein that is overexpressed in many cancers, including breast cancer, glioblastoma, and angiosarcoma. High VAT1 expression correlates with poor overall survival, and genetic knockout models of VAT1 indicate potent antimigratory activity, suggesting that VAT1 is a promising antimetastasis target. Recently, the natural product neocarzilin A (NCA) from was reported to be the first validated small-molecule inhibitor of VAT1, having strong activity in metastasis models of angiosarcoma and breast cancer.

View Article and Find Full Text PDF

Harnessing natural compounds for PIM-1 kinase inhibition: A synergistic approach using virtual screening, molecular dynamics simulations, and free energy calculations.

Cell Mol Biol (Noisy-le-grand)

November 2024

Department of Health Informatics, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia .

Cancer has substantial economic ramifications for healthcare systems. PIM kinases, specifically PIM-1, are commonly upregulated in different types of cancers, thereby promoting cancer development. PIM-1 inhibitors have garnered interest for their potential efficacy in cancer therapy.

View Article and Find Full Text PDF

In about 85% of cancer malignancies, replicative immortality caused by increased telomerase activity makes it an attractive target for developing anticancer therapeutics. However, the lack of approved small-molecule inhibitors rooted in the structural ambiguity of telomerase has impeded drug development for decades. In this study, we have exploited the FVYL pocket in the thumb domain, which plays a key role in the enzyme's processivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!