A consensus genetic map of tetraploid cotton was constructed using six high-density maps and after the integration of a sequence-based marker redundancy check. Public cotton SSR libraries (17,343 markers) were curated for sequence redundancy using 90% as a similarity cutoff. As a result, 20% of the markers (3,410) could be considered as redundant with some other markers. The marker redundancy information had been a crucial part of the map integration process, in which the six most informative interspecific Gossypium hirsutum×G. barbadense genetic maps were used for assembling a high density consensus (HDC) map for tetraploid cotton. With redundant markers being removed, the HDC map could be constructed thanks to the sufficient number of collinear non-redundant markers in common between the component maps. The HDC map consists of 8,254 loci, originating from 6,669 markers, and spans 4,070 cM, with an average of 2 loci per cM. The HDC map presents a high rate of locus duplications, as 1,292 markers among the 6,669 were mapped in more than one locus. Two thirds of the duplications are bridging homoeologous A(T) and D(T) chromosomes constitutive of allopolyploid cotton genome, with an average of 64 duplications per A(T)/D(T) chromosome pair. Sequences of 4,744 mapped markers were used for a mutual blast alignment (BBMH) with the 13 major scaffolds of the recently released Gossypium raimondii genome indicating high level of homology between the diploid D genome and the tetraploid cotton genetic map, with only a few minor possible structural rearrangements. Overall, the HDC map will serve as a valuable resource for trait QTL comparative mapping, map-based cloning of important genes, and better understanding of the genome structure and evolution of tetraploid cotton.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3454346 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045739 | PLOS |
Nat Commun
December 2024
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
Although epigenetic modification has long been recognized as a vital force influencing gene regulation in plants, the dynamics of chromatin structure implicated in the intertwined transcriptional regulation of duplicated genes in polyploids have yet to be understood. Here, we document the dynamic organization of chromatin structure in two subgenomes of allotetraploid cotton (Gossypium hirsutum) by generating 3D genomic, epigenomic and transcriptomic datasets from 12 major tissues/developmental stages covering the life cycle. We systematically identify a subset of genes that are closely associated with specific tissue functions.
View Article and Find Full Text PDFTheor Appl Genet
December 2024
Cotton Fiber Bioscience and Utilization Research Unit, USDA-ARS-SRRC, New Orleans, 70124, LA, USA.
GWAS of a new MAGIC population containing alleles from five tetraploid Gossypium species identified novel fiber QTL and confirmed previously identified stable QTL. Identification of loci and underlying genes for fiber quality traits will facilitate genetic improvement in cotton fiber quality. In this research, a genome-wide association study (GWAS) was carried out for fiber quality attributes using a new multi-parent advanced generation inter-cross (MAGIC) population consisting of 372 recombinant inbred lines (RILs).
View Article and Find Full Text PDFBiology (Basel)
November 2024
School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China.
Plants (Basel)
October 2024
Hebei Base of State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Hebei Agricultural University, Baoding 071000, China.
Caffeoyl coenzyme A-O-methyltransferase (CCoAOMT) has a critical function in the lignin biosynthesis pathway. However, its functions in cotton are not clear. In this research, we observed 50 genes from four cotton species, including two diploids (, 9, and ) and two tetraploids (, 16, and ), performed bioinformatic analysis, and focused on the involvement and functions of in lignin synthesis of .
View Article and Find Full Text PDFNat Genet
November 2024
National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!