The serum prostate-specific antigen (PSA) test has a high false positive rate. As a single marker, PSA provides limited diagnostic information. A multi-marker test capable of detecting not only tumors but also the potentially lethal ones provides an unmet clinical need. Using the nanoString nCounter gene expression system, a 20-gene multiplex test was developed based on digital gene counting of RNA transcripts in urine as a means to detect prostate cancer. In this test, voided urine is centrifuged to pellet cells and the purified RNA is amplified for hybridization to preselected probesets. Amplification of test cell line RNA appeared not to introduce significant bias, and the counts matched well with gene abundance levels as measured by DNA microarrays. For data analysis, the individual counts were compared to that of β2 microglobulin, a housekeeping gene. Urine samples of 5 pre-operative cases and 2 non-cancer were analyzed. Pathology information was then retrieved. Signals for a majority of the genes were low for non-cancer and low Gleason scores, and 6/6 known prostate cancer markers were positive in the cases. One case of Gleason 4+5 showed, in contrast, strong signals for all cancer-associated markers, including CD24. One non-cancer also showed signals for all 6 cancer markers, and this man might harbor an undiagnosed cancer. This multiplex test assaying a natural waste product can potentially be used for screening, early cancer detection and patient stratification. Diagnostic information is gained from the RNA signatures that are associated with cell types of prostate tumors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447789 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045656 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!