Background: TEA domain (TEAD) proteins are highly conserved transcription factors involved in embryonic development and differentiation of various tissues. More recently, emerging evidences for a contribution of these proteins towards apoptosis and cell proliferation regulation have also been proposed. These effects appear to be mediated by the interaction between TEAD and its co-activator Yes-Associated Protein (YAP), the downstream effector of the Hippo tumour suppressor pathway.
Methodology/principal Findings: We further investigated the mechanisms underlying TEAD-mediated apoptosis regulation and showed that overexpression or RNAi-mediated silencing of the TEAD1 protein is sufficient to protect mammalian cell lines from induced apoptosis, suggesting a proapoptotic function for TEAD1 and a non physiological cytoprotective effect for overexpressed TEAD1. Moreover we show that the apoptotic resistance conferred by altered TEAD1 expression is mediated by the transcriptional up-regulation of Livin, a member of the Inhibitor of Apoptosis Protein (IAP) family. In addition, we show that overexpression of a repressive form of TEAD1 can induce Livin up-regulation, indicating that the effect of TEAD1 on Livin expression is indirect and favoring a model in which TEAD1 activates a repressor of Livin by interacting with a limiting cofactor that gets titrated upon TEAD1 up-regulation. Interestingly, we show that overexpression of a mutated form of TEAD1 (Y421H) implicated in Sveinsson's chorioretinal atrophy that strongly reduces its interaction with YAP as well as its activation, can induce Livin expression and protect cells from induced apoptosis, suggesting that YAP is not the cofactor involved in this process.
Conclusions/significance: Taken together our data reveal a new, Livin-dependent, apoptotic role for TEAD1 in mammals and provide mechanistic insight downstream of TEAD1 deregulation in cancers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3454436 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045498 | PLOS |
Background: Yes-associated protein (YAP) is a crucial mechanosensor involved in mechanotransduction, but its role in regulating mechanical force-induced bone remodeling during orthodontic tooth movement (OTM) is unclear. This study aims to elucidate the relationship between mechanotransduction and mechanical force-induced alveolar bone remodeling during OTM.
Results: Our study confirms an asynchronous (temporal and spatial sequence) remodeling pattern of the alveolar bone under mechanical force during OTM.
J Cell Mol Med
December 2024
Laboratoire d'Oncologie Moléculaire, Département de Chimie, Université du Québec à Montréal, Montreal, Quebec, Canada.
The Hippo pathway plays a tumorigenic role in highly angiogenic glioblastoma (GBM), whereas little is known about clinically relevant Hippo pathway inhibitors' ability to target adaptive mechanisms involved in GBM chemoresistance. Their molecular impact was investigated here in vitro against an alternative process to tumour angiogenesis termed vasculogenic mimicry (VM) in GBM-derived cell models. In silico analysis of the downstream Hippo signalling members YAP1, TAZ and TEAD1 transcript levels in low-grade glioblastoma (LGG) and GBM tumour tissues was performed using GEPIA.
View Article and Find Full Text PDFJ Med Chem
December 2024
Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
Taking the structural information into account, we were able to tune the TEAD selectivity for a specific chemotype. However, different TEAD selectivity profiles did not affect the compound potency or efficacy in the NCI-H226 viability assay. Amides based on or analogues showed improved viability efficacy compared with the corresponding acids.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
December 2024
Department of Neurosurgery, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli West Road, Zhangzhou, Fujian, 363000, P.R. China.
The involvement of long non-coding RNAs (lncRNAs) in glioma carcinogenesis has gradually been identified. Herein, we aimed to explore the function and mechanism of lncRNA muskelin 1 antisense RNA (MKLN1-AS) in glioma cell oncogenic properties. Quantitative real-time polymerase chain reaction was utilized to test the expression of MKLN1-AS, miR-126-5p, and TEAD1 (TEA Domain Transcription Factor 1) mRNA expression.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Department of Cardiology, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
Atherosclerotic plaque rupture mainly contributes to acute coronary syndrome (ACS). Insufficient repair of these plaques leads to thrombosis and subsequent ACS. Central to this process is the modulation of vascular smooth muscle cells (VSMCs) phenotypes, emphasizing their pivotal role in atherosclerotic plaque stability and healing post-disruption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!