Survival of Vibrio cholerae in nutrient-poor environments is associated with a novel "persister" phenotype.

PLoS One

Department of Environmental and Global Health, School of Public Health and Health Profession, University of Florida at Gainesville, Gainesville, Florida, USA.

Published: February 2013

In response to antibiotic and/or environmental stress, some species of bacteria shift to a "persister" phenotype. Although toxigenic Vibrio cholerae, responsible for the disease cholera, can be found in nutrient-poor aquatic environments in endemic areas, the underlying mechanism(s) by which culturable cells persist in these environmental reservoirs is largely unknown. Here we report that introduction of V. cholerae into a nutrient-poor filter sterilized lake water (FSLW) microcosm promoted a shift to what we have defined as a "persister" phenotype (PP) which was culturable for >700 days. Direct transfer of PP of V. cholerae from original microcosms to freshly prepared FSLW resulted in the same pattern of persistence seen in the original microcosms. Scanning electron microscopy of cells persisting for over 700 days demonstrated cell morphologies that were very small in size, with a high degree of aggregation associated with flagella emanating from all aspects of the cell. V. cholerae PP cells reverted to a typical V. cholerae morphology when transferred to nutrient-rich L- broth. Cell-free supernatants obtained from microcosms at 24 hours, 180 days, and 700 days all showed >2-fold increase in CAI-1 signaling molecules, consistent with quorum sensing activity, as has been described for Pseudomonas aeruginosa persister cells. Chitin and phosphate promoted cell growth. Our data suggest that nutrient stress can select a V. cholerae persister phenotype in environmental reservoirs, with these strains then seeding subsequent cholera epidemics in response to chitin and phosphate availability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445476PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0045187PLOS

Publication Analysis

Top Keywords

"persister" phenotype
12
vibrio cholerae
8
cholerae nutrient-poor
8
environmental reservoirs
8
original microcosms
8
700 days
8
chitin phosphate
8
cholerae
7
survival vibrio
4
nutrient-poor environments
4

Similar Publications

Pyrazinamide (PZA) is a key first-line antituberculosis drug that plays an important role in eradicating persister (TB) bacilli and shortening the duration of tuberculosis treatment. However, PZA-resistance is on the rise, particularly among persons with multidrug-resistant (MDR) tuberculosis. This nationwide study was conducted to explore the prevalence of mutations conferring PZA resistance, catalogue mutation diversity, investigate the associations of PZA resistance with specific lineages, examine co-resistance to 13 first- and second-line drugs, and evaluate the diagnostic accuracy of sequencing A and D genes for predicting PZA resistance.

View Article and Find Full Text PDF

Patient-Derived Xenografts of Breast Cancer.

Adv Exp Med Biol

January 2025

Laboratory of Preclinical Investigation, Translational Research Department, Institut Curie, Paris, France.

Patient-derived xenografts (PDX) of breast cancer, obtained from the engraftment of tumour samples into immunodeficient mice, are the most effective preclinical models for studying the biology of human breast cancer and for the evaluation of new anti-cancer treatments. Notably, breast cancer PDX preserve the phenotypic and molecular characteristics of the donor tumours and reproduce the diversity of breast cancer. This preservation of breast cancer biology involves a number of different aspects, including tumour architecture and morphology, patterns of genomic alterations and gene expression, mutational status, and intra-tumour heterogeneity.

View Article and Find Full Text PDF

Persisters describe phenotypically switched cells refractory to antibiotic killing in a genetically susceptible population, while preserving the ability to resume growth when antibiotics are discontinued1,2. Since its proposal 70 years ago, great strides were made to build the framework regarding persistence, including defining triggered, spontaneous and antibiotic-induced persisters. However, challenges remain in characterizing the molecular determinants underlying the phenotypic switch into persistence3.

View Article and Find Full Text PDF

Comparative analyses of persistence traits in O157:H7 strains belonging to different clades including REPEXH01 and REPEXH02 strains.

Front Microbiol

December 2024

Meat Safety and Quality Research Unit, U.S. Department of Agriculture, U.S. Meat Animal Research Center, Clay Center, NE, United States.

Recent application of whole genome sequencing in the investigation of foodborne illness outbreaks has facilitated the identification of Reoccurring, Emerging, or Persistent (REP) bacterial strains that have caused illnesses over extended periods of time. Here, the complete genomes of two O157:H7 (EcO157) outbreak strains belonging to REPEXH01 and REPEXH02, respectively, were sequenced and annotated. Comparative genomics and phenotypic analyses were carried out to identify REP-associated traits.

View Article and Find Full Text PDF

Persistence and/or Senescence: Not So Lasting at Last?

Cancer Res

January 2025

Medical Department of Hematology, Oncology and Tumor Immunology, Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Charité - Universitätsmedizin, Berlin, Germany.

Article Synopsis
  • Therapy-exposed surviving cancer cells can undergo significant changes in their epigenetics, making them more resilient and likely to cause aggressive relapses.
  • Ramponi and colleagues researched a specific type of cell behavior in lung cancer and melanoma, induced by mTOR/PI3K inhibitors, noting how these cells mimic some characteristics of senescent cells but lack an inflammatory response typical of those cells.
  • Their findings indicate potential weaknesses in these drug-tolerant cells and highlight challenges in studying these behaviors in laboratory settings, sparking discussions on the nature and treatment of persister cells in cancer.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!