XMRV, or xenotropic murine leukemia virus (MLV)-related virus, is a novel gammaretrovirus originally identified in studies that analyzed tissue from prostate cancer patients in 2006 and blood from patients with chronic fatigue syndrome (CFS) in 2009. However, a large number of subsequent studies failed to confirm a link between XMRV infection and CFS or prostate cancer. On the contrary, recent evidence indicates that XMRV is a contaminant originating from the recombination of two mouse endogenous retroviruses during passaging of a prostate tumor xenograft (CWR22) in mice, generating laboratory-derived cell lines that are XMRV-infected. To confirm or refute an association between XMRV and prostate cancer, we analyzed prostate cancer tissues and plasma from a prospectively collected cohort of 39 patients as well as archival RNA and prostate tissue from the original 2006 study. Despite comprehensive microarray, PCR, FISH, and serological testing, XMRV was not detected in any of the newly collected samples or in archival tissue, although archival RNA remained XMRV-positive. Notably, archival VP62 prostate tissue, from which the prototype XMRV strain was derived, tested negative for XMRV on re-analysis. Analysis of viral genomic and human mitochondrial sequences revealed that all previously characterized XMRV strains are identical and that the archival RNA had been contaminated by an XMRV-infected laboratory cell line. These findings reveal no association between XMRV and prostate cancer, and underscore the conclusion that XMRV is not a naturally acquired human infection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3445615 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0044954 | PLOS |
Cell Mol Biol (Noisy-le-grand)
January 2025
Al Door Technical Institute, Northern Technical University, Mosul, Iraq.
Prostate cancer is the most common type after the age of fifty. It affects males and affects the prostate gland, which protects the function of sperm by producing semen. The current study was designed to evaluate prostate cancer infection effects on some biomarkers such as irisin, Tumor necrosis factor-TNF-α, prostate acid phosphates -PAP, Glutathione-GSH, malondialdehyde-MDA, urea, and creatinine.
View Article and Find Full Text PDFCell Mol Biol (Noisy-le-grand)
January 2025
Departamento de Biología Molecular y Genómica y Departamento de Disciplinas Filosófico Metodológicas e Instrumentales. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México.
ABCG2 transporter protein is one of several markers of prostate cancer stem cells (PCSCs). Gene variants of ABCG2 could affect protein expression, function, or both. The aim of this study was to identify the genetic variability of the ABCG2 gene in Mexican patients with prostate cancer.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Medical Biology, Faculty of Medicine, Kutahya Health Sciences University, Kutahya, Turkey.
Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.
View Article and Find Full Text PDFEur Urol
January 2025
Eastern Health Clinical School, Monash University, Melbourne, Australia; Cancer Services, Eastern Health, Melbourne, Australia; Biomedicine Discovery Institute Cancer Program, Prostate Cancer Research Group, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia.
Eur Urol
January 2025
Unit of Urology/Division of Oncology, Gianfranco Soldera Prostate Cancer Lab, IRCCS San Raffaele Scientific Institute, Milan, Italy; "Vita-Salute" San Raffaele University, Milan, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!