Gielis curves and surfaces can describe a wide range of natural shapes and they have been used in various studies in biology and physics as descriptive tool. This has stimulated the generalization of widely used computational methods. Here we show that proper normalization of the Levenberg-Marquardt algorithm allows for efficient and robust reconstruction of Gielis curves, including self-intersecting and asymmetric curves, without increasing the overall complexity of the algorithm. Then, we show how complex curves of k-type can be constructed and how solutions to the Dirichlet problem for the Laplace equation on these complex domains can be derived using a semi-Fourier method. In all three methods, descriptive and computational power and efficiency is obtained in a surprisingly simple way.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459917PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029324PLOS

Publication Analysis

Top Keywords

natural shapes
8
gielis curves
8
universal natural
4
shapes unifying
4
unifying shape
4
shape description
4
description simple
4
simple methods
4
methods shape
4
shape analysis
4

Similar Publications

Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.

View Article and Find Full Text PDF

Assessing the impact of climate change on water-related ecosystem services (ES) in Protected Areas (PAs) is essential for developing soil and water conservation strategies that promote sustainability and restore ES. However, the application of ES research in Protected Area (PA) management remains ambiguous and has notable shortcomings. This study primarily aimed to assess the SDR-InVEST (Sediment Delivery Ratio-Integrated Valuation of Ecosystem Services and Tradeoffs) model for estimating ES, including soil loss, sediment export, and sediment retention, under various climate change scenarios from 1997 to 2100 in the data-scarce region of the Bagh-e-Shadi Forest PA.

View Article and Find Full Text PDF

This case report presents an atypical transverse cervical artery with its detailed anatomy, morphogenesis, and association with the high arch-shaped subclavian artery. The atypical arteries, related arteries, and adjacent cervical and brachial plexuses were macroscopically examined in a 98-year-old Japanese female cadaver donated to The Nippon Dental University for medical education and research. The atypical deep branch of the transverse cervical artery originated from the internal thoracic artery and passed through between the C5 and C6 roots, in close contact with the C5 and C6 junction, to reach the dorsal side of the brachial plexus.

View Article and Find Full Text PDF

To protect the body from infections, the brain has evolved the ability to coordinate behavioral and immunological responses. The conditioned immune response (CIR) is a form of Pavlovian conditioning wherein a sensory (for example, taste) stimulus, when paired with an immunomodulatory agent, evokes aversive behavior and an anticipatory immune response after re-experiencing the taste. Although taste and its valence are represented in the anterior insular cortex and immune response in the posterior insula and although the insula is pivotal for CIRs, the precise circuitry underlying CIRs remains unknown.

View Article and Find Full Text PDF

How the tulip breaking virus creates striped tulips.

Commun Biol

January 2025

Department of Mathematical and Statistical Sciences, Faculty of Science, University of Alberta, Edmonton, AB, Canada.

The beauty of tulips has enchanted mankind for centuries. The striped variety has attracted particular attention for its intricate and unpredictable patterns. A good understanding of the mechanism driving the striped pattern formation of broken tulips has been missing since the 17th century.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!