RNA silencing is a defense system against "genomic parasites" such as transposable elements (TE), which are potentially harmful to host genomes. In plants, transcripts from TEs induce production of double-stranded RNAs (dsRNAs) and are processed into small RNAs (small interfering RNAs, siRNAs) that suppress TEs by RNA-directed DNA methylation. Thus, the majority of TEs are epigenetically silenced. On the other hand, most of the eukaryotic genome is composed of TEs and their remnants, suggesting that TEs have evolved countermeasures against host-mediated silencing. Under some circumstances, TEs can become active and increase in copy number. Knowledge is accumulating on the mechanisms of TE silencing by the host; however, the mechanisms by which TEs counteract silencing are poorly understood. Here, we show that a class of TEs in rice produces a microRNA (miRNA) to suppress host silencing. Members of the microRNA820 (miR820) gene family are located within CACTA DNA transposons in rice and target a de novo DNA methyltransferase gene, OsDRM2, one of the components of epigenetic silencing. We confirmed that miR820 negatively regulates the expression of OsDRM2. In addition, we found that expression levels of various TEs are increased quite sensitively in response to decreased OsDRM2 expression and DNA methylation at TE loci. Furthermore, we found that the nucleotide sequence of miR820 and its recognition site within the target gene in some Oryza species have co-evolved to maintain their base-pairing ability. The co-evolution of these sequences provides evidence for the functionality of this regulation. Our results demonstrate how parasitic elements in the genome escape the host's defense machinery. Furthermore, our analysis of the regulation of OsDRM2 by miR820 sheds light on the action of transposon-derived small RNAs, not only as a defense mechanism for host genomes but also as a regulator of interactions between hosts and their parasitic elements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3459959 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1002953 | DOI Listing |
Int J Syst Evol Microbiol
January 2025
Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
Small, obligately anaerobic strains 13CB8C, 13CB11C, 13CB18C and 13GAM1G were isolated from a faecal sample in a patient with Parkinson's disease with a history of duodenal resection. After conducting a comprehensive polyphasic taxonomic analysis including genomic analysis, we propose the establishment of one new genus and four new species. The novel bacteria are sp.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Hepatobiliary Pancreatic Splenic Surgery, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China.
Background: A recent study revealed the oncogenic role of box C/D small nucleolar RNA 52 (SNORD52) in hepatocellular carcinoma (HCC) by facilitating the aggressive phenotypes of hepatoma cells. However, the potential role of exosomal SNORD52 in macrophage polarization during HCC progression remains poorly understood.
Methods: Exosomes were isolated from hepatoma cells.
Angew Chem Int Ed Engl
January 2025
Changchun Institute of Applied Chemistry Chinese Academy of Sciences: Chang Chun Institute of Applied Chemistry Chinese Academy of Sciences, State Key Lab of Electroanalytical Chemistry, 5625 Renmin Street, 130022, Changchun, CHINA.
Solid-state nanopore is a promising single molecular detection technique, but is largely limited by relatively low resolution to small-size targets and laborious design of signaling probes. Here we establish a universal, CRISPR/Cas-Assisted Nanopore Operational Nexus (CANON), which can accurately transduce different targeting sources/species into different DNA structural probes via a "Signal-ON" mode. Target recognition activates the cleavage activity of a Cas12a/crRNA system and then completely digest the blocker of an initiator.
View Article and Find Full Text PDFHematol Oncol
January 2025
Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Multiple myeloma is a plasma cell malignancy characterized by an abnormal increase in monoclonal immunoglobulins. Despite significant advances in treatment, some patients progress to more aggressive forms of multiple myeloma, including extramedullary disease or plasma cell leukemia. Although the exact molecular mechanisms are not known, several studies have confirmed the involvement of small extracellular vesicle-enriched microRNAs in multiple myeloma progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!