The complex regulation of TGF-β in cardiovascular disease.

Vasc Health Risk Manag

Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain.

Published: February 2013

Transforming growth factor β (TGF-β1) is a pleiotropic cytokine with many and complex effects in cell and tissue physiology. This is made possible by a very complex and interwoven signaling system, whose regulation continues to be the focus of a growing line of research. This complex regulation translates to a key role in cardiovascular physiology, hemostasis, and the blood-vessel interface. In accordance with this, the TGF-β1 pathway appears to be deregulated in related disorders, such as atherosclerotic vascular disease and myeloproliferative syndromes. It is expected that the growing amount of experimental and clinical research will yield medical advances in the applications of knowledge of the TGF-β1 pathway to diagnosis and therapeutics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446857PMC
http://dx.doi.org/10.2147/VHRM.S28041DOI Listing

Publication Analysis

Top Keywords

complex regulation
8
tgf-β1 pathway
8
complex
4
regulation tgf-β
4
tgf-β cardiovascular
4
cardiovascular disease
4
disease transforming
4
transforming growth
4
growth factor
4
factor tgf-β1
4

Similar Publications

Introduction: Implementation of clinical practice guidelines, an important strategy in the prevention of pressure injuries, enables the nurse to interpret evidence-based guideline recommendations, reduce errors, ensure compliance and standardisation of complex processes, manage patient-related risks and systematically regulate all preventable conditions.

Objective: This study was conducted to ensure the Turkish language and content validity of the Standardised Pressure Injury Prevention Protocol (SPIPP- Adult) Checklist 2.0.

View Article and Find Full Text PDF

In yeast and mammals, the EXO70 subunit of the exocyst complex plays a key role in mediating the tethering of exocytic vesicles to the plasma membrane (PM). In plants, however, the role of EXO70 in regulating vesicle tethering during exocytosis remains unclear. In land plants, EXO70 has undergone significant evolutionary expansion, resulting in multiple EXO70 paralogues that may allow the exocyst to form various isoforms with specific functions.

View Article and Find Full Text PDF

Cholesterol mediates the potential adverse influence of graphene quantum dots on placental lipid membrane model.

Sci Rep

December 2024

College of Physical Science and Technology, Yangzhou University, Yangzhou, 225009, Jiangsu, China.

Nanomaterial-biomembrane interactions constitute a critical biological process in assessing the toxicity of such materials in theoretical studies. However, many investigations simplify these interactions by using membrane models containing only one or a few lipid types, deviating significantly from the complexity of real membrane compositions. In particular, cholesterol, a ubiquitous lipid essential for regulating membrane fluidity and closely linked to various diseases, is often overlooked.

View Article and Find Full Text PDF

VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have been widely used in the treatment of various inflammatory diseases. The inadequate understanding of MSCs and their heterogeneity can impact the immune environment, which may be the cause of the good outcomes of MSCs-based therapy that cannot always be achieved. Recently, stem cells from human exfoliated deciduous teeth (SHED) showed great potential in inflammatory and autoimmune diseases due to their immature properties compared with MSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!