Dissociative recombination of H3+: 10 years in retrospect.

Philos Trans A Math Phys Eng Sci

Department of Physics, AlbaNova University Center, Stockholm University, 10691 Stockholm, Sweden.

Published: November 2012

The dissociative recombination of H(3)(+) has been an intriguing problem for more than half a century. The early experiments on H(3)(+) during the first 20 years were carried out without mass analysis in decaying plasma afterglows, and thus the measured rates pertained to an uncontrolled mixture of H(3)(+) and impurity ions. When mass analysis was used, the rate coefficient was determined to be an uneventful value of about 10(-7) cm(3) s(-1), a very common rate coefficient for many molecular ions. But this was not the end of the story, not even the beginning of the end; it marked only the end of the beginning. The story I will tell in this article started about 10 years ago, when the dissociative recombination of H(3)(+) was approaching its deepest crisis. Today, owing to an extensive experimental and theoretical effort, the state of affairs has reached a historically unique level of harmony, although there still remains many things to sort out.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479713PMC
http://dx.doi.org/10.1098/rsta.2012.0020DOI Listing

Publication Analysis

Top Keywords

dissociative recombination
12
recombination h3+
12
h3+ years
8
mass analysis
8
rate coefficient
8
h3+
5
years retrospect
4
retrospect dissociative
4
h3+ intriguing
4
intriguing problem
4

Similar Publications

The Cu site in particulate methane monooxygenase may be used to produce hydrogen peroxide.

Dalton Trans

January 2025

Department of Computational Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden.

Particulate methane monooxygenase (pMMO) is the most efficient of the two groups of enzymes that can hydroxylate methane. The enzyme is membrane bound and therefore hard to study experimentally. For that reason, there is still no consensus regarding the location and nature of the active site.

View Article and Find Full Text PDF

The ground-state charge generation (GSCG) in photoactive layers determines whether the photogenerated carriers occupy the deep trap energy levels, which, in turn, affects the device performance of organic solar cells (OSCs). In this work, charge-quadrupole electrostatic interactions are modulated to achieve GSCG through a molecular strategy of introducing different numbers of F atom substitutions on the BTA3 side chain. The results show that 8F substitution (BTA3-8F) and 16F substitution (BTA3-16F) lead to different patterns of highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level changes.

View Article and Find Full Text PDF

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

Photoinduced Fröhlich Interaction-Driven Distinct Electron- and Hole-Polaron Behaviors in Hybrid Organic-Inorganic Perovskites by Ultrafast Terahertz Probes.

ACS Nano

January 2025

School of Information Science and Technology and Department of Optical Science and Engineering and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China.

The formation of large polarons resulting from the Fröhlich coupling of photogenerated carriers with the polarized crystal lattice is considered crucial in shaping the outstanding optoelectronic properties in hybrid organic-inorganic perovskite crystals. Until now, the initial polaron dynamics after photoexcitation have remained elusive in the hybrid perovskite system. Here, based on the terahertz time-domain spectroscopy and optical-pump terahertz probe, we access the nature of interplay between photoexcited unbound charge carriers and optical phonons in MAPbBr within the initial 5 ps after excitation and have demonstrated the simultaneous existence of both electron- and hole-polarons, together with the photogenerated carrier dynamic process.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!