Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We present a unique proxy for the reconstruction of variation in precipitation over the Amazon: oxygen isotope ratios in annual rings in tropical cedar (Cedrela odorata). A century-long record from northern Bolivia shows that tree rings preserve the signal of oxygen isotopes in precipitation during the wet season, with weaker influences of temperature and vapor pressure. Tree ring δ(18)O correlates strongly with δ(18)O in precipitation from distant stations in the center and west of the basin, and with Andean ice core δ(18)O showing that the signal is coherent over large areas. The signal correlates most strongly with basin-wide precipitation and Amazon river discharge. We attribute the strength of this (negative) correlation mainly to the cumulative rainout processes of oxygen isotopes (Rayleigh distillation) in air parcels during westward transport across the basin. We further find a clear signature of the El Niño-Southern Oscillation (ENSO) in the record, with strong ENSO influences over recent decades, but weaker influence from 1925 to 1975 indicating decadal scale variation in the controls on the hydrological cycle. The record exhibits a significant increase in δ(18)O over the 20th century consistent with increases in Andean δ(18)O ice core and lake records, which we tentatively attribute to increased water vapor transport into the basin. Taking these data together, our record reveals a fresh path to diagnose and improve our understanding of variation and trends of the hydrological cycle of the world's largest river catchment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479466 | PMC |
http://dx.doi.org/10.1073/pnas.1205977109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!