Transcription activator-like effector nucleases (TALENs) are programmable nucleases that join FokI endonuclease with the modular DNA-binding domain of TALEs. Although zinc-finger nucleases enable a variety of genome modifications, their application to genetic engineering of livestock has been slowed by technical limitations of embryo-injection, culture of primary cells, and difficulty in producing reliable reagents with a limited budget. In contrast, we found that TALENs could easily be manufactured and that over half (23/36, 64%) demonstrate high activity in primary cells. Cytoplasmic injections of TALEN mRNAs into livestock zygotes were capable of inducing gene KO in up to 75% of embryos analyzed, a portion of which harbored biallelic modification. We also developed a simple transposon coselection strategy for TALEN-mediated gene modification in primary fibroblasts that enabled both enrichment for modified cells and efficient isolation of modified colonies. Coselection after treatment with a single TALEN-pair enabled isolation of colonies with mono- and biallelic modification in up to 54% and 17% of colonies, respectively. Coselection after treatment with two TALEN-pairs directed against the same chromosome enabled the isolation of colonies harboring large chromosomal deletions and inversions (10% and 4% of colonies, respectively). TALEN-modified Ossabaw swine fetal fibroblasts were effective nuclear donors for cloning, resulting in the creation of miniature swine containing mono- and biallelic mutations of the LDL receptor gene as models of familial hypercholesterolemia. TALENs thus appear to represent a highly facile platform for the modification of livestock genomes for both biomedical and agricultural applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3491456 | PMC |
http://dx.doi.org/10.1073/pnas.1211446109 | DOI Listing |
Zoolog Sci
December 2024
Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan,
Mol Ther
November 2024
Arcturus Therapeutics, Inc., 10628 Science Center Drive, Suite 250, San Diego, CA 92121, USA.
Lipoprotein(a), or Lp(a), is encoded by the LPA gene and is a causal genetic risk factor for cardiovascular disease. Individuals with high Lp(a) are at risk for cardiovascular morbidity and are refractory to standard lipid-lowering agents. Lp(a)-lowering therapies currently in clinical development require repetitive dosing, while a gene editing approach presents an opportunity for a single-dose treatment.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Animal Sciences, Zhejiang University, 310058 Hangzhou, China; Suposik Bioscience Technologies Ltd., 314031 Jiaxing, China; Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, 310058 Hangzhou, China. Electronic address:
Silk fiber is generally considered an excellent biological material due to its good biocompatibility, morphological plasticity and biodegradability. Previously, the construction of silkworm silk gland bioreactors based on the piggyBac transposon has been optimized. However, the inserted exogenous genes have problems such as position uncertainty, and expression is not strictly controlled.
View Article and Find Full Text PDFMol Ther
November 2024
Cellectis Inc, New York, NY 10016, USA. Electronic address:
Adoptive cell therapy using chimeric antigen receptor (CAR) T cells has proven to be lifesaving for many cancer patients. However, its therapeutic efficacy has been limited in solid tumors. One key factor for this is cancer-associated fibroblasts (CAFs) that modulate the tumor microenvironment (TME) to inhibit T cell infiltration and induce "T cell dysfunction.
View Article and Find Full Text PDFTransgenic Res
August 2024
The Roslin Institute, RDSVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!