The assembly of actin monomers into filaments and networks plays vital roles throughout eukaryotic biology, including intracellular transport, cell motility, cell division, determining cellular shape, and providing cells with mechanical strength. The regulation of actin assembly and modulation of filament mechanical properties are critical for proper actin function. It is well established that physiological salt concentrations promote actin assembly and alter the overall bending mechanics of assembled filaments and networks. However, the molecular origins of these salt-dependent effects, particularly if they involve nonspecific ionic strength effects or specific ion-binding interactions, are unknown. Here, we demonstrate that specific cation binding at two discrete sites situated between adjacent subunits along the long-pitch helix drive actin polymerization and determine the filament bending rigidity. We classify the two sites as "polymerization" and "stiffness" sites based on the effects that mutations at the sites have on salt-dependent filament assembly and bending mechanics, respectively. These results establish the existence and location of the cation-binding sites that confer salt dependence to the assembly and mechanics of actin filaments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479481 | PMC |
http://dx.doi.org/10.1073/pnas.1211078109 | DOI Listing |
Polymers (Basel)
December 2024
State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
Adsorption is one of the most promising strategies for heavy metal removal. For Hg(II) removal, mineralized Ca-based shell-type self-assembly beads (MCABs) using alginate as organic polymer template were synthesized in this work. The adsorbent preparation consists of gelation of a Ca-based spherical polymer template (CAB) and rate-controlled self-assembly mineralization in bicarbonate solution with various concentrations.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States.
Liquid crystals (LCs), when interfaced with chemically functionalized surfaces, can amplify a range of chemical and physical transformations into optical outputs. While metal cation-binding sites on surfaces have been shown to provide a basis for the design of chemoresponsive LCs, the cations have been found to dissociate from the surfaces and dissolve slowly into LCs, resulting in time-dependent changes in the properties of LC-solid interfaces (which impacts the reliability of devices incorporating such surfaces). Here, we explore the use of surfaces comprising metal-coordinating polymers to minimize the dissolution of metal cations into LCs and characterize the impact of the interfacial environment created by the coordinating polymer on the ordering and time-dependent properties of LCs.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
The serotonin transporter (SERT), responsible for the reuptake of released serotonin, serves as a major target for antidepressants and psychostimulants. Nevertheless, refining the mechanistic models for SERT remains challenging. Here, we expand the molecular understanding of the binding of ions, substrates, and inhibitors to SERT by incorporating the fluorescent non-canonical amino acid Anap through genetic code expansion.
View Article and Find Full Text PDFChemistry
December 2024
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
We synthesized a planar macrocyclic dinuclear nickel(II) metallohost from the corresponding macrocyclic imine ligand containing two NO chelate coordination sites and an O cation binding site like 18-crown-6 as well as peripheral hexyl groups. Due to the lipophilic nature of the hexyl groups, the metallohost was soluble in less polar media where its interaction with alkali metal ions was enhanced. The binding studies by NMR spectroscopy clearly showed its strong tendency to form multi-layered structures.
View Article and Find Full Text PDFPLoS One
September 2024
Department of Chemistry & Biochemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!