Bacterial polynucleotide phosphorylase (PNPase) is a 3'-5' processive exoribonuclease that participates in mRNA turnover and quality control of rRNA precursors in many bacterial species. It also associates with the RNase E scaffold and other components to form a multi-enzyme RNA degradasome machinery that performs a wider regulatory role in degradation, quality control and maturation of mRNA and noncoding RNA. Several crystal structures of bacterial PNPases, as well as some biological activity studies, have been published. However, how the enzymatic activity of PNPase is regulated is less well understood. Recently, Escherichia coli PNPase was found to be a direct c-di-GMP binding target, raising the possibility that c-di-GMP may participate in the regulation of RNA processing. Here, the successful cloning, purification and crystallization of S1-domain-truncated Xanthomonas campestris PNPase (XcPNPaseΔS1) in the presence of c-di-GMP are reported. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 132.76, b = 128.38, c = 133.01 Å, γ = 93.3°, and diffracted to a resolution of 2.00 Å.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497989PMC
http://dx.doi.org/10.1107/S1744309112036202DOI Listing

Publication Analysis

Top Keywords

xanthomonas campestris
8
campestris pnpase
8
presence c-di-gmp
8
quality control
8
pnpase
5
crystallization preliminary
4
preliminary x-ray
4
x-ray diffraction
4
diffraction studies
4
studies xanthomonas
4

Similar Publications

Microbial synthesis of m-tyrosine via whole-cell biocatalysis.

Enzyme Microb Technol

January 2025

Biotechnology Program, Department of Engineering Technology, Cullen College of Engineering, University of Houston, Houston, TX 77004, United States. Electronic address:

Meta-tyrosine (m-tyrosine), a nonproteinogenic amino acid, has shown significant potential for applications as an herbicide in agriculture and for various medical uses. However, the natural abundance of m-tyrosine is very low, limiting its widespread use. In this study, we successfully achieved microbial production of m-tyrosine by establishing the in vivo enzyme activity of phenylalanine 3-hydroxylase (PacX from Streptomyces coeruleoribudus) in E.

View Article and Find Full Text PDF

Integrated Transcriptome and Metabolome Analysis Reveals the Resistance Mechanisms of Against .

Int J Mol Sci

January 2025

Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.

View Article and Find Full Text PDF
Article Synopsis
  • This study highlights the importance of finding natural biocontrol agents to combat plant pathogens that threaten the global food supply.
  • The strain b12.3, isolated from Olkhon Island, possesses the ability to inhibit various plant pathogens and shows potential as a biocontrol agent.
  • Advanced genomic analysis revealed that b12.3 has multiple biosynthetic gene clusters and insecticidal genes, suggesting its effectiveness in pest management and providing insight into its ecological role in Lake Baikal.
View Article and Find Full Text PDF

Microbial production of xanthan gum from forage sorghum straw (FSS) was investigated. The important aspect investigated was the synthesis of xanthan gum using hemicellulose as a substrate (hemicellulose-derived xanthan), a process that has been relatively underexplored in the existing literature. Xanthomonas campestris ATCC 33913 and an isolated strain from orange peel, identified as X.

View Article and Find Full Text PDF

This Technical Resource describes genome sequencing data for 61 isolates of the bacterial pathogen pv. collected from and crops between 2010 and 2021 in Serbia. We present the raw sequencing reads and annotated contig-level genome assemblies and determine the races of ten isolates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!