Electrophoresis is a powerful method that has seen a wide range of applications, often in automated genetic diagnostic instruments that require the use of a replaceable sieving matrix. The power and simplicity of electrophoresis as an analysis technique would be ideal for highly integrated and low-cost analysis systems if the method could be implemented in microfluidics on the scale of several mm. We demonstrate the electrophoretic analysis of DNA with separation lengths as small as 2 mm and with a resolution adequate for the analysis of PCR products, i.e. resolutions of 10-20 base pairs. Such small-scale separations enable analysis systems consisting of microfluidics and microelectronics integrated into a single inexpensive package, thereby overcoming a key challenge facing the development of the lab on chip technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/elps.201200188 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!