Objective: There are currently no targeted therapies against lung tumors with oncogenic K-ras mutations that are found in 25% to -40% of lung cancers and are characterized by their resistance to epidermal growth factor receptor inhibitors. The isozyme group IIa secretory phospholipase A(2) (sPLA(2)IIa) is a potential biomarker and regulator of lung cancer cell invasion; however, the relationship between K-ras mutations and sPLA(2)IIa has yet to be investigated. We hypothesize that sPLA(2)IIa modulates lung cancer cell growth in K-ras mutant cells and that sPLA(2)IIa expression in human lung tumors is increased in K-ras mutant tumors.
Methods: Baseline sPLA(2)IIa expression in K-ras mutant lung cancer cell lines (A549, SW1573, H358, H2009) was assessed. Cells were treated with a specific sPLA(2)IIa inhibitor and evaluated for apoptosis and cell viability. Nuclear factor kappa-b (NF-κB) and extracellular signal-regulated kinase 1/2 activity were detected by Western blot. Human tumor samples were evaluated for sPLA(2)IIa mRNA expression by quantitative reverse-transcription polymerase chain reaction.
Results: Cytotoxicity of sPLA(2)IIa inhibition correlates with sPLA(2)IIa expression. Apoptosis in response to sPLA(2) inhibition parallels attenuation in NF-κB activity. In addition, sPLA(2)IIa expression in human tumors correlates with squamous cell pathology and increasing stage of K-ras mutant lung tumors.
Conclusions: Baseline sPLA(2)IIa expression predicts response to sPLA(2)IIa inhibition in some K-ras mutant lung cancer cells. This finding is independent of p53 mutation status. Furthermore, squamous tumors and advanced-stage K-ras mutant tumors express more sPLA(2)IIa. These data support a role for sPLA(2)IIa as a potential global therapeutic target in the treatment of lung cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3855847 | PMC |
http://dx.doi.org/10.1016/j.jtcvs.2012.08.064 | DOI Listing |
Cancers (Basel)
October 2024
Department Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
Oncogenic mutations in the gene are detected in >90% of pancreatic cancers (PC). In genetically engineered mouse models of PC, oncogenic drives the formation of precursor lesions and their progression to invasive PC. The Yes-associated Protein (YAP) is a transcriptional coactivator required for transformation by the RAS oncogenes and the development of PC.
View Article and Find Full Text PDFJ Control Release
December 2024
College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA. Electronic address:
With 60 % of non-small cell lung cancer (NSCLC) expressing epidermal growth factor receptor (EGFR), it has been explored as an important therapeutic target for lung tumors. However, even the well-established EGFR inhibitors tend to promptly develop resistance over time. Moreover, strategies that could impede resistance development and be advantageous for both EGFR-Tyrosine kinase inhibitor (TKI)-sensitive and mutant NSCLC patients are constrained.
View Article and Find Full Text PDFPathogens
August 2024
Department of Pathology & Laboratory Medicine, School of Medicine, Tulane Cancer Center, Tulane University, New Orleans, LA 70118, USA.
Lung tumor-promoting environmental exposures and γherpesvirus infections are associated with Type 17 inflammation. To test the effect of γherpesvirus infection in promoting lung tumorigenesis, we infected mutant K-Ras-expressing (K-Ras) mice with the murine γherpesvirus MHV68 via oropharyngeal aspiration. After 7 weeks, the infected mice displayed a more than 2-fold increase in lung tumors relative to their K-Ras uninfected littermates.
View Article and Find Full Text PDFCurr Issues Mol Biol
September 2024
Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-808 Zabrze, Poland.
Int J Mol Sci
August 2024
Laboratory of Signal Transduction, National Institutes of Environmental Health, NIH, Research Triangle Park, NC 27709, USA.
Erastin (ER) induces cell death through the formation of reactive oxygen species (ROS), resulting in ferroptosis. Ferroptosis is characterized by an accumulation of ROS within the cell, leading to an iron-dependent oxidative damage-mediated cell death. ER-induced ferroptosis may have potential as an alternative for ovarian cancers that have become resistant due to the presence of Ras mutation or multi-drug resistance1 (MDR1) gene expression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!