Coordination modes, spectral, thermal and biological evaluation of hetero-metal copper containing 2-thiouracil complexes.

Spectrochim Acta A Mol Biomol Spectrosc

Department of Chemistry, Faculty of Science, Alexandria University, PO Box 426-Ibrahimia, Alexandria 21321, Egypt.

Published: December 2012

Mononuclear copper complex [CuL(NH(3))(4)]Cl(2)·0.5H(2)O and three new hetero-metallic complexes: [Cu(2)Ni(L)(2)(NH(3))(2)Cl(2)·6H(2)O] 2H(2)O(,) [Cu(3)Co(L)(4)·8H2O]Cl·4(·)5H(2)O, and [Cu(4)Co(2)Ni(L)(3)(OH)(4)(NH(3))Cl(4)·3H(2)O]4H(2)O where L is 2-thiouracil, were prepared and characterized by elemental analyses, molar conductance, room-temperature magnetic susceptibility, spectral (IR, UV-Vis and ESR) studies and thermal analyses techniques (TG, DTG and DTA). The molar conductance data revealed that [CuL(NH(3))(4)]Cl(2)·0.5H(2)O and [Cu(3)Co(L)(4)·8H2O]Cl·4.5H(2)O are electrolytes, while, [Cu(2)Ni(L)(2)(NH(3))(2)Cl(2·)6H(2)O]·2H(2)O and [Cu(4)Co(2)Ni(L)(3)(OH)(4)(NH(3))Cl(4)·3H(2)O]4H(2)O are non-electrolytes. IR spectra showed, that 2-thiouracil ligand behaves as a bidentate or tetradentate ligand. The geometry around the metal atoms is octahedral in all the prepared complexes except in [Cu(4)Co(2)Ni(L)(3)(OH)(4)(NH(3))Cl(4)·3H(2)O]4H(2)O complex where square planar environment around Co(II), Ni(II) and Cu(II) were suggested. Thermal decomposition study of the prepared complexes was monitored by TG, DTG and DTA analyses under N(2) atmosphere. The decomposition course and steps were analyzed. The order of chemical reactions (n) was calculated via the peak symmetry method and the activation parameters of the non- isothermal decomposition were computed from the thermal decomposition data. The negative values of ΔS(∗) deduced the ordered structures of the prepared complexes compared to their starting reactants. The antimicrobial activity of the prepared complexes were screened in vitro against a Gram positive, a Gram negative bacteria, a filamentous fungi and a yeast. The antimicrobial screening data showed that the studied compounds exhibited a good level of activity against Escherichia coli, Staphylococcus aureus and Candida albicans but have no efficacy against Aspergillus flavus. It was observed that [Cu(4)Co(2)Ni(L)(3)(OH)(4)(NH(3))Cl(4)·3H(2)O]4H(2)O complex showed the most intensive activity against the tested microorganisms. Trials to prepare single crystals from complexes were failed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2012.08.084DOI Listing

Publication Analysis

Top Keywords

prepared complexes
16
molar conductance
8
dtg dta
8
[cu4co2nil3oh4nh3cl4·3h2o]4h2o complex
8
thermal decomposition
8
complexes
7
prepared
5
coordination modes
4
modes spectral
4
thermal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!