AI Article Synopsis

  • - This study explored how short-term exposure to iron (Fe) and copper (Cu) affects root growth and physiological changes in wheat seedlings, using varying concentrations (0, 100, 300, and 500μM) of each metal.
  • - Both metals reduced root and shoot lengths, but only high Cu levels (500μM) inhibited seed germination, with Cu causing more severe damage to root cells compared to Fe.
  • - Higher concentrations of Fe increased total chlorophyll content in leaves, while high Cu levels decreased it; moreover, Fe stimulated certain enzyme activities, while Cu increased catalase and peroxidase activities in leaves, leading to varying hydrogen peroxide (H2O2) levels between the two treatments

Article Abstract

The purpose of this study was to analyze phytotoxicity mechanism involved in root growth and to compare physiological changes in the leaves of wheat seedlings exposed to short term iron (Fe) and copper (Cu) stresses (0, 100, 300 and 500μM). All applied Fe or Cu concentrations reduced root and shoot lengths, but seed germination was inhibited by Cu only at 500μM. Analyses using fluorescent dye 2',7'-dichlorodihydrofluorescein diacetate indicated enhanced H(2)O(2) levels in seedling roots under Fe and Cu treatments. Cu stress at the same concentration induced a great reduction in cell viability and a strong damage on membrane lipid in the roots with respect to Fe treatment. Significant increases in the total chlorophyll (chl) content including chl a and chl b were observed in response to higher Fe concentrations, whereas the highest Cu concentration (500μM) led to significant decreases in the total chl content including chl a. Additionally, leaf peroxidase (POD) and ascorbate peroxidase (APX) were stimulated by Fe stress, but the highest Fe concentration exhibited inhibitory effect on leaf APX activity. In contrast, copper treatment resulted in an elevation in leaf catalase and POD activities. Therefore, H(2)O(2) content in the leaves associated with copper was significantly lower than that with iron at the same concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2012.09.010DOI Listing

Publication Analysis

Top Keywords

iron copper
8
chl content
8
content including
8
including chl
8
highest concentration
8
chl
5
responses seedling
4
seedling growth
4
growth antioxidant
4
antioxidant activity
4

Similar Publications

Effect of micronutrients on the risk of Graves' disease: a Mendelian randomization study.

Front Nutr

December 2024

Department of Endocrinology and Metabolism, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Background: Micronutrient research on Graves' disease (GD) is limited and controversial. Therefore, in order to explore possible correlations between genetically predicted amounts of six micronutrients [Copper (Cu), Iron (Ir), Zinc (Zn), Calcium (Ca), Vitamin C (VC), and Vitamin D (VD)] and GD risk, we carried out Mendelian randomization research (MR).

Methods: We conducted an MR analysis using genome-wide association studies (GWAS) from people of European ancestry and aggregated information from UK Biobank to provide insight into the relationships between micronutrients and GD.

View Article and Find Full Text PDF

Approximately 2 billion people still lack access to clean drinking water. Extensive efforts are underway to develop semiconductor photocatalysts for water disinfection and environmental remediation, but conventional liquid-solid diphase interfacial photocatalysts face challenges like low diffusion coefficients and limited solubility of dissolved oxygen. This study introduces freestanding copper oxide fluffy pine needle structures (CO-FPNs) with tunable water pollutants-gas-solid (WGS) triple-phase interfaces that enhance oxygen enrichment and reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Background: Inductively coupled plasma mass spectrometry (ICP-MS) is widely used for the accurate measurement of minerals. However, its application to serum essential mineral measurement has not been fully evaluated. The present study aimed to assess the performance of ICP-MS for serum minerals by comparing its measurements to those obtained using standard quantification methods.

View Article and Find Full Text PDF

This study highlights the prooxidant, antiproliferative and anti-inflammatory potential of ripe Meyna spinosa Roxb. ex Link fruit extracts. Chemical analysis by HRMS and AAS identified compounds like ursolic acid, oleanolic acid, lupeol, betulin, scopoletin, phloroglucinol, secoxyloganin, etc and micro-elements like iron, copper, zinc, and manganese.

View Article and Find Full Text PDF

Elucidating the high affinity copper(II) complexation by the iron chelator deferasirox provides therapeutic and toxicity insight.

ChemMedChem

December 2024

University of Puerto Rico Rio Piedras: Universidad de Puerto Rico Recinto de Rio Piedras, Chemistry, 17 University Avenue, 00925, San Juan, UNITED STATES OF AMERICA.

Deferasirox (Def), an orally administered iron-chelating drug, has drawn significant interest in repurposing for anticancer application due to the elevated Fe demand by cancer cells. But there are also concerns about its severe off target health effects. Herein Cu(II) binding is studied as a potential off target interaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: