Many different species of animals including mole rats, pigeons, and sea turtles are thought to use the magnetic field of the earth for navigational guidance. While laboratory rats are commonly used for navigational research, and brain networks have been described in these animals that presumably mediate accurate spatial navigation, little has been done to determine the role of the geomagnetic field in these brain networks and in the navigational behavior of these animals. In Experiment 1, anterior thalamic head direction (HD) cells were recorded in female Long-Evans rats while they foraged in an environment subjected to an experimentally generated magnetic field of earth-strength intensity, the polarity of which could be shifted from one session to another. Despite previous work that has shown that the preferred direction of HD cells can be controlled by the position of familiar landmarks in a recording environment, the directional signal of HD cells was not influenced by the polarity of the magnetic field in the enclosure. Because this finding could be attributed to the animal being insensitive or inattentive to the magnetic field, in Experiment 2, rats were trained in a choice maze task dependent on the ability of the animals to sense the polarity of the experimentally controlled magnetic field. Over the course of 28 days of training, performance failed to improve to a level above chance, providing evidence that the spatial behavior of laboratory rats (and the associated HD network) is insensitive to the polarity of the geomagnetic field.

Download full-text PDF

Source
http://dx.doi.org/10.1037/a0030248DOI Listing

Publication Analysis

Top Keywords

magnetic field
28
directional signal
8
head direction
8
field
8
laboratory rats
8
brain networks
8
geomagnetic field
8
direction cells
8
magnetic
7
rats
6

Similar Publications

Construction of magnetic response nanocellulose particles to realize smart antibacterial of pickering emulsion.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Smart antibacterial Pickering emulsion can respond to the stimulation of environmental conditions to control the release of antibacterial agents, protecting the quality and safety of food. In this study, FeO was grafted on the cellulose nanocrystal (CNC) via ultrasound-assisted in situ co-precipitation to synthesize the magnetic cellulose nanocomposite particles. When the ratio of FeCl and FeCl was 1.

View Article and Find Full Text PDF

An L-plug-and-play approach for MPI using a zero shot denoiser with evaluation on the 3D open MPI dataset.

Phys Med Biol

January 2025

Faculty of Mathematics and Natural Sciences , Hochschule Darmstadt, Schöfferstr., 3, Darmstadt, Hessen, 64295, GERMANY.

Magnetic Particle Imaging (MPI) is an emerging medical imaging modality which has gained increasing interest in recent years. Among the benefits of MPI are its high temporal resolution, and that the technique does not expose the specimen to any kind of ionizing radiation. It is based on the non-linear response of magnetic nanoparticles to an applied magnetic field.

View Article and Find Full Text PDF

The present work describes the process of the creation and analysis of the first dataset containing processing parameters and functional properties of soft magnetic composites (SMC). All data were obtained experimentally using Fe-3% MgO system. When creating samples, parameters such as a size of MgO nanoparticles, pressing pressure, sintering temperature, time and atmosphere were varied.

View Article and Find Full Text PDF

High thermoelectric performance is generally achieved by synergistically optimizing two or even three of the contradictorily coupled thermoelectric parameters. Here we demonstrate magneto-thermoelectric correlation as a strategy to achieve simultaneous gain in an enhanced Seebeck coefficient and reduced thermal conductivity in topological materials. We report a large magneto-Seebeck effect and high magneto-thermoelectric figure of merit of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!