AI Article Synopsis

  • Renewed interest in biodiesel production from oil-rich seeds has highlighted the potential value of oilseed meals, which are nutrient-rich byproducts suitable for agricultural land application.
  • In a study examining soil microbial responses to different types of biomass amendments, it was found that mustard oilseed meal significantly increased the abundance of bacteria linked to fungal disease suppression and dramatically reduced fungal diversity.
  • The results indicate that different biomass types, especially those containing glucosinolates like mustard, can considerably alter soil microbial communities, which is crucial for maintaining ecosystem health.

Article Abstract

Demand for alternative fuels has sparked renewed interest in the production of biodiesel from oil-rich seeds. Oilseed meals are a byproduct of this process, and given their relatively high nutrient content, land application represents a potential value-added use. In this microcosm-based study, soil microbial community responses to amendments of a glucosinolate-containing brassicaceous oilseed meal (Brassica juncea, mustard), a non-glucosinolate-containing, nonbrassicaceous oilseed meal (Linum usitatissimum, flax), and a nonoilseed biomass (Sorghum bicolor) were characterized using a 28-day time series of replicated 16S rRNA gene and fungal ITS gene sequence libraries. We hypothesized that biomass type and glucosinolate content would alter community composition but that effects would diminish over time. Distinct separation occurred by amendment type, with mustard inducing large increases in the abundance of bacterial taxa associated with fungal disease suppression (e.g. Bacillus, Pseudomonas, and Streptomyces spp.). Dramatic shifts were seen among the fungi, too, with phylotype richness decreasing by > 60% following mustard addition. Changes in bacterial and fungal community composition were rapid, and distinct community types persisted throughout the study. Oilseed amendment, and mustard in particular, has the potential to alter soil microbial community structure substantially, and such changes are likely to be important in the context of ecosystem health.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1574-6941.12020DOI Listing

Publication Analysis

Top Keywords

nonbrassicaceous oilseed
8
oilseed meals
8
bacterial fungal
8
soil microbial
8
microbial community
8
oilseed meal
8
community composition
8
oilseed
5
community
5
differential impacts
4

Similar Publications

Article Synopsis
  • Renewed interest in biodiesel production from oil-rich seeds has highlighted the potential value of oilseed meals, which are nutrient-rich byproducts suitable for agricultural land application.
  • In a study examining soil microbial responses to different types of biomass amendments, it was found that mustard oilseed meal significantly increased the abundance of bacteria linked to fungal disease suppression and dramatically reduced fungal diversity.
  • The results indicate that different biomass types, especially those containing glucosinolates like mustard, can considerably alter soil microbial communities, which is crucial for maintaining ecosystem health.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!