Oxygen transport in the microcirculation and its regulation.

Microcirculation

Department of Physiology and Biophysics, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA.

Published: February 2013

Objective: Cells require energy to carry out their functions and they typically use oxidative phosphorylation to generate the needed ATP. Thus, cells have a continuous need for oxygen, which they receive by diffusion from the blood through the interstitial fluid. The circulatory system pumps oxygen-rich blood through a network of increasingly minute vessels, the microcirculation. The structure of the microcirculation is such that all cells have at least one nearby capillary for diffusive exchange of oxygen and red blood cells release the oxygen bound to hemoglobin as they traverse capillaries.

Methods: This review focuses first on the historical development of techniques to measure oxygen at various sites in the microcirculation, including the blood, interstitium, and cells.

Results: Next, approaches are described as to how these techniques have been employed to make discoveries about different aspects of oxygen transport. Finally, ways in which oxygen might participate in the regulation of blood flow toward matching oxygen supply to oxygen demand is discussed.

Conclusions: Overall, the transport of oxygen to the cells of the body is one of the most critical functions of the cardiovascular system and it is in the microcirculation where the final local determinants of oxygen supply, oxygen demand, and their regulation are decided.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3574207PMC
http://dx.doi.org/10.1111/micc.12017DOI Listing

Publication Analysis

Top Keywords

oxygen
12
oxygen transport
8
oxygen supply
8
supply oxygen
8
oxygen demand
8
microcirculation
5
cells
5
blood
5
transport microcirculation
4
microcirculation regulation
4

Similar Publications

The emergence of self-propelling magnetic nanobots represents a significant advancement in the field of drug delivery. These magneto-nanobots offer precise control over drug targeting and possess the capability to navigate deep into tumor tissues, thereby addressing multiple challenges associated with conventional cancer therapies. Here, Fe-GSH-Protein-Dox, a novel self-propelling magnetic nanobot conjugated with a biocompatible protein surface and loaded with doxorubicin for the treatment of triple-negative breast cancer (TNBC), is reported.

View Article and Find Full Text PDF

Predictors of high-flow nasal cannula (HFNC) failure in severe community-acquired pneumonia or COVID-19.

Intern Emerg Med

December 2024

Department of Respiratory Medicine and Allergology, University Hospital, Goethe University, Frankfurt, Germany.

The aim was to identify predictors for early identification of HFNC failure risk in patients with severe community-acquired (CAP) pneumonia or COVID-19. Data from adult critically ill patients admitted with CAP or COVID-19 and the need for ventilatory support were retrospectively analysed. HFNC failure was defined as the need for invasive ventilation or death before intubation.

View Article and Find Full Text PDF

Added safety measures coupled with the development and use of pathogen reduction technologies (PRT) significantly reduces the risk of transfusion-transmitted infections (TTIs) from blood products. Current approved PRTs utilize chemical and/or UV-light based inactivation methods. While the effectiveness of these PRTs in reducing pathogens are well documented, these can cause tolerable yet unintended consequences on the quality and efficacy of the transfusion products.

View Article and Find Full Text PDF

Iron oxide nanoparticles (IONPs) have the potential to be utilized in a multitude of fields, including biomedicine. Consequently, the potential health risks associated with their use must be carefully considered. Most biosafety evaluations of IONPs have focused on examining the impact of the material's distinctive physicochemical attributes.

View Article and Find Full Text PDF

The effect of hot isostatic pressing (HIP) on the thermoelectric power factor of zinc oxide (ZnO) has been examined. ZnO is expected to be a potential n-type oxide thermoelectric material that could enhance the thermoelectric conversion efficiency. The HIP treatment is useful for densifying the material and controlling crystal defects in the material by applying high temperatures and pressures simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!