A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart. | LitMetric

Low birth weight and accelerated postnatal growth lead to increased risk of cardiovascular disease. We reported previously that rats exposed to a low-protein diet in utero and postnatal catch-up growth (recuperated) develop metabolic dysfunction and have reduced life span. Here we explored the hypothesis that cardiac oxidative and nitrosative stress leading to DNA damage and accelerated cellular aging could contribute to these phenotypes. Recuperated animals had a low birth weight (P<0.001) but caught up in weight to controls during lactation. At weaning, recuperated cardiac tissue had increased (P<0.05) protein nitrotyrosination and DNA single-stranded breaks. This condition was preceded by increased expression of DNA damage repair molecules 8-oxoguanine-DNA-glycosylase-1, nei-endonuclease-VIII-like, X-ray-repair-complementing-defective-repair-1, and Nthl endonuclease III-like-1 on d 3. These differences were maintained on d 22 and became more pronounced in the case of 8-oxoguanine-DNA-glycosylase-1 and nei-endonuclease-VIII-like. This was accompanied by increases in xanthine oxidase (P<0.001) and NADPH oxidase (P<0.05), major sources of reactive oxygen species (ROS). The detrimental effects of increased ROS in recuperated offspring may be exaggerated at 22 d by reductions (P<0.001) in the antioxidant enzymes peroxiredoxin-3 and CuZn-superoxide-dismutase. We conclude that poor fetal nutrition followed by accelerated postnatal growth results in increased cardiac nitrosative and oxidative-stress and DNA damage, which could contribute to age-associated disease risk.

Download full-text PDF

Source
http://dx.doi.org/10.1096/fj.12-218685DOI Listing

Publication Analysis

Top Keywords

accelerated postnatal
8
postnatal growth
8
dna damage
8
oxidative nitrosative
8
nitrosative stress
8
low birth
8
birth weight
8
poor maternal
4
maternal nutrition
4
nutrition accelerated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!