Genevestigator analysis has indicated heat shock induction of transcripts for NADPH-thioredoxin reductase, type C (NTRC) in the light. Here we show overexpression of NTRC in Arabidopsis (NTRC°(E)) resulting in enhanced tolerance to heat shock, whereas NTRC knockout mutant plants (ntrc1) exhibit a temperature sensitive phenotype. To investigate the underlying mechanism of this phenotype, we analyzed the protein's biochemical properties and protein structure. NTRC assembles into homopolymeric structures of varying complexity with functions as a disulfide reductase, a foldase chaperone, and as a holdase chaperone. The multiple functions of NTRC are closely correlated with protein structure. Complexes of higher molecular weight (HMW) showed stronger activity as a holdase chaperone, while low molecular weight (LMW) species exhibited weaker holdase chaperone activity but stronger disulfide reductase and foldase chaperone activities. Heat shock converted LMW proteins into HMW complexes. Mutations of the two active site Cys residues of NTRC into Ser (C217/454S-NTRC) led to a complete inactivation of its disulfide reductase and foldase chaperone functions, but conferred only a slight decrease in its holdase chaperone function. The overexpression of the mutated C217/454S-NTRC provided Arabidopsis with a similar degree of thermotolerance compared with that of NTRC°(E) plants. However, after prolonged incubation under heat shock, NTRC°(E) plants tolerated the stress to a higher degree than C217/454S-NTRC°(E) plants. The results suggest that the heat shock-mediated holdase chaperone function of NTRC is responsible for the increased thermotolerance of Arabidopsis and the activity is significantly supported by NADPH.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/mp/sss105 | DOI Listing |
Plant Physiol Biochem
January 2025
Division of Applied Life Science (BK21four), PBRRC, IALS, and RILS, Gyeongsang National University, Jinju, 52828, Republic of Korea. Electronic address:
Phytohormone auxin plays a pivotal role in governing plant growth, development, and responses to abiotic stresses. YUCCA6 (YUC6), an auxin biosynthetic enzyme belonging to the flavin monooxygenase (FMO) subfamily, converts indole-3-pyruvic acid to indole-3-acetic acid. Our prior investigation uncovered that YUC6 also functions as a thiol-reductase and chaperone in a Cys85-dependent manner, resulting in conferred tolerance to nickel heavy metal stress and drought and delayed leaf senescence.
View Article and Find Full Text PDFFEBS J
December 2024
Redox Metabolism, Institute of Biochemistry, University of Cologne, Germany.
The mitochondrial disulphide relay machinery is essential for the import and oxidative folding of many proteins in the mitochondrial intermembrane space. Its core component, the import receptor MIA40 (also CHCHD4), serves as an oxidoreductase but also as a chaperone holdase, which initially interacts with its substrates non-covalently before introducing disulphide bonds for folding and retaining proteins in the intermembrane space. Interactome studies have identified diverse substrates of MIA40, among them the intrinsically disordered HCLS1-associated protein X-1 (HAX1).
View Article and Find Full Text PDFJ Biol Chem
December 2024
Department of Microbiology & Molecular Genetics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA. Electronic address:
Oxidants produced through endogenous metabolism or encountered in the environment react directly with reactive sites in biological macromolecules. Many proteins, in particular, are susceptible to oxidative damage, which can lead to their altered structure and function. Such structural and functional changes trigger a cascade of events that influence key components of the proteostasis network.
View Article and Find Full Text PDFMethods Enzymol
November 2024
Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria. Electronic address:
Holdase chaperones are essential in the mitochondrial membrane-protein biogenesis as they stabilize preproteins and keep them in an import-competent state as they travel through the aqueous cytosol and intermembrane space. The small TIM chaperones of the mitochondrial intermembrane space function within a fine balance of client promiscuity and high affinity binding, while being also able to release their client proteins without significant energy barrier to the downstream insertases/translocases. The tendency of the preproteins to aggregate and the dynamic nature of the preprotein-chaperone complexes makes the preparation of these complexes challenging.
View Article and Find Full Text PDFCommun Biol
October 2024
Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
The RAB interacting factor (RABIF) is a putative guanine nucleotide exchange factor that also functions as a RAB-stabilizing holdase chaperone. It has been implicated in pathogenesis of several cancers. However, the functional role and molecular mechanism of RABIF in hepatocellular carcinoma (HCC) are not entirely known.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!