Total dissolved gas (TDG) supersaturation caused by dam sluicing can result in gas bubble trauma (GBT) in fish and threaten their survival. In the present study, Chinese suckers (Myxocyprinus asiaticus Bleeker) were exposed to TDG supersaturated water at levels ranging from 120% to 145% for 48 h. The median lethal concentration (LC(50)) and the median lethal time (LT(50)) were determined to evaluate acute lethal effects on Chinese suckers. The results showed that the LC(50) values of 4, 6, 8, and 10 h were 142%, 137%, 135%, and 130%, respectively. The LT(50) values were 3.2, 4.7, 7.8, 9.2, and 43.4 h, respectively, when TDG supersaturated levels were 145%, 140%, 135%, 130%, and 125%. Furthermore, the biological responses in Chinese suckers were studied by assaying the catalase (CAT) activities in gills and muscles at the supersaturation level of 140% within LT(50). The CAT activities in the gills and muscle tissues exhibited a regularity of a decrease after an increase. CAT activities in the muscles were increased significantly at 3/5LT(50) (P<0.05) and then came back to the normal level. However, there were no significant differences between the treatment group (TDG level of 140%) and the control group (TDG level of 100%) on CAT activities in the gills before 3/5LT(50) (P>0.05), but the activities were significantly lower than the normal level at 4/5LT(50) and LT(50) (P<0.05).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468822 | PMC |
http://dx.doi.org/10.1631/jzus.B1200022 | DOI Listing |
Comp Biochem Physiol Part D Genomics Proteomics
November 2024
Nanjing Normal University; Fresh Water Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China. Electronic address:
This study investigated the effects of short-term exposure to flavonoids, specifically quercetin and taxifolin, on the transcriptomic responses of Chinese sucker (Myxocyprinus asiaticus) to validate their influence on gene expression related to immunity, antioxidant activity, and metabolism. Using transcriptomic data, we also analyzed their influence on relevant immune genes and examined the Chinese suckers' resistance to A. hydrophila.
View Article and Find Full Text PDFBioinspir Biomim
December 2024
Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
The exploration of adaptive robotic systems capable of performing complex tasks in unstructured environments, such as underwater salvage operations, presents a significant challenge. Traditional rigid grippers often struggle with adaptability, whereas bioinspired soft grippers offer enhanced flexibility and adaptability to varied object shapes. In this study, we present a novel bioinspired soft robotic gripper integrated with a shape memory alloy (SMA) actuated suction cup, inspired by the versatile grasping strategies of octopus arms and suckers.
View Article and Find Full Text PDFMater Today Bio
August 2024
Ningbo Medical Center Li Huili Hospital, Health Science Center, Ningbo University, Ningbo, 315000, PR China.
Medical adhesives play an important role in clinical medicine because of their flexibility and convenient operation. However, they are still limited to laparoscopic surgeries, which have demonstrated urgent demand for liver retraction with minimal damage to the human body. Here, inspired by the suction cup structure of octopus, an adhesive patch with excellent mechanical properties, robust and switchable adhesiveness, and biocompatibility is proposed.
View Article and Find Full Text PDFSci Adv
May 2024
China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
The impact of dams on global migratory fish stocks is a major challenge and remains seriously underestimated. China has initiated a dozen fish rescue programs for the dams on the Yangtze River, focusing on five flagship species-Chinese sturgeon, Chinese paddlefish, Yangtze sturgeon, Chinese sucker, and . Despite 40 years of effort, these five fishes are on the verge of extinction.
View Article and Find Full Text PDFNat Commun
April 2024
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, China.
Terrestrial self-reconfigurable robot swarms offer adaptable solutions for various tasks. However, most existing swarms are limited to controlled indoor settings, and often compromise stability due to their freeform connections. To address these issues, we present a snail robotic swarm system inspired by land snails, tailored for unstructured environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!