Here we report the cloning of the Pa_3_10940 gene from the coprophilic fungus Podospora anserina, which encodes a C-terminal family 1 carbohydrate binding module (CBM1) linked to a domain of unknown function. The function of the gene was investigated by expression of the full-length protein and a truncated derivative without the CBM1 domain in the yeast Pichia pastoris. Using a library of polysaccharides of different origins, we demonstrated that the full-length enzyme displays activity toward a broad range of β-glucan polysaccharides, including laminarin, curdlan, pachyman, lichenan, pustulan, and cellulosic derivatives. Analysis of the products released from polysaccharides revealed that this β-glucanase is an exo-acting enzyme on β-(1,3)- and β-(1,6)-linked glucan substrates and an endo-acting enzyme on β-(1,4)-linked glucan substrates. Hydrolysis of short β-(1,3), β-(1,4), and β-(1,3)/β-(1,4) gluco-oligosaccharides confirmed this striking feature and revealed that the enzyme performs in an exo-type mode on the nonreducing end of gluco-oligosaccharides. Excision of the CBM1 domain resulted in an inactive enzyme on all substrates tested. To our knowledge, this is the first report of an enzyme that displays bifunctional exo-β-(1,3)/(1,6) and endo-β-(1,4) activities toward beta-glucans and therefore cannot readily be assigned to existing Enzyme Commission groups. The amino acid sequence has high sequence identity to hypothetical proteins within the fungal taxa and thus defines a new family of glycoside hydrolases, the GH131 family.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3502917 | PMC |
http://dx.doi.org/10.1128/AEM.02572-12 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!