Objective: Bipolar disorder (BD) is associated with elevated cardiovascular mortality rates. We investigated the modulation of l-arginine-nitric oxide (NO) signaling in platelets from patients with BD at different phases.

Methods: Platelets obtained from 28 patients with BD and 10 healthy volunteers were analyzed for l-arginine transport, NO synthase (NOS) activity, cyclic guanosine monophosphate content, and biomarkers of oxidative stress. Expressions of NOS isoforms, soluble guanylyl cyclase, and arginase were also measured in platelets. Amino acid and C-reactive protein levels in plasma were assessed.

Results: Plasma concentrations of l-arginine (mean [M] ± standard error of the mean [SEM] = 97 ± 10 versus 121 ± 10 µM) and its transport into platelets (median [interquartile range] = 26.0 [28.6] versus 26.5 [43.9] pmol/10(9) cells per minute) did not differ between patients with BD and controls (p > .05). Patients with BD showed reduced NOS activity (M ± SEM = 0.037 ± 0.003 versus 0.135 ± 0.022 pmol/10(8) cells, p < .001), but not endothelial NOS, inducible NOS, and arginase expression, compared with controls (p > .05). Cyclic guanosine monophosphate content was reduced (M ± SEM = 0.022 ± 0.003 versus 0.086 ± 0.020 pmol/10(8) cells, p < .05) despite the absence of changes in soluble guanylyl cyclase expression (median [interquartile range] = 21.6 [15.5] versus 9.5 [9.4] arbitrary units, p > .05) in patients with BD. Superoxide dismutase activity, but not catalase activity, was increased in patients with BD in the manic phase (M ± SEM = 2094 ± 335 versus 172 ± 17 U/mg protein, p < .001). C-reactive protein was elevated only in manic episodes (M ± SEM = 0.8 ± 0.2 versus 0.1 ± 0.02 mg/L, p < .001).

Conclusions: Impaired NO generation from platelets, inflammation, and oxidative stress may play pivotal roles in the multifaceted process of cardiovascular events in BD.

Download full-text PDF

Source
http://dx.doi.org/10.1097/PSY.0b013e3182689460DOI Listing

Publication Analysis

Top Keywords

guanosine monophosphate
12
bipolar disorder
8
platelets patients
8
cyclic guanosine
8
monophosphate content
8
oxidative stress
8
soluble guanylyl
8
guanylyl cyclase
8
c-reactive protein
8
median [interquartile
8

Similar Publications

Background: The role of cyclic guanosine 3',5'-monophosphate (cGMP) after acute myocardial infarction (AMI) is not well understood despite its significance as a second messenger of natriuretic peptides (NPs) in cardiovascular disease. We investigated the association between the NP-cGMP cascade and left ventricular reverse remodelling (LVRR) in anterior AMI.

Methods: 67 patients with their first anterior AMI (median age, 64 years; male, 76%) underwent prospective evaluation of plasma concentrations of the molecular forms of A-type and B-type natriuretic peptide (BNP) and cGMP from immediately after primary percutaneous coronary intervention (PPCI) to 10 months post-AMI.

View Article and Find Full Text PDF

HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF-mutant microsatellite stable colorectal cancer.

J Immunother Cancer

January 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China

Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.

View Article and Find Full Text PDF

Chemoprotective Mechanism of Sodium Thiosulfate Against Cisplatin-Induced Nephrotoxicity Is via Renal Hydrogen Sulfide, Arginine/cAMP and NO/cGMP Signaling Pathways.

Int J Mol Sci

January 2025

Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra P.O. Box LG581, Ghana.

Cisplatin is a common and highly effective chemotherapeutic agent whose nephrotoxic side effect is well-characterized. Sodium thiosulfate (STS), an FDA-approved hydrogen sulfide (HS) donor drug, is emerging as a chemoprotective agent against cisplatin-induced nephrotoxicity (CIN). In this study, we investigated the chemoprotective mechanism of STS in a rat model of CIN.

View Article and Find Full Text PDF

Vascular smooth muscle cell (SMC) relaxation by guanylyl cyclases (GCs) and cGMP is mediated by NO and its receptor soluble GC (sGC) or natriuretic peptides (NPs) ANP/BNP and CNP with the receptors GC-A and GC-B, respectively. It is commonly accepted that cultured SMCs differ from those in intact vessels. Nevertheless, cell culture often remains the first step for signaling investigations and drug testing.

View Article and Find Full Text PDF

Potential beneficial impacts of tadalafil on cardiovascular diseases.

J Chin Med Assoc

January 2025

Department and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.

Tadalafil is a selective phosphodiesterase type 5 (PDE5) inhibitor commonly used for the treatment of erectile dysfunction and benign prostatic hyperplasia. Its mechanism of action involves the inhibition of PDE5, leading to increased levels of nitric oxide and cyclic guanosine monophosphate in the corpus cavernosum, which facilitates smooth muscle relaxation. This article reviews studies using tadalafil in the treatment of cardiovascular diseases and emphasizes its potential advantages in conditions such as pulmonary arterial hypertension, atherosclerosis, coronary artery disease, myocardial infarction, heart failure, stroke, diabetic ulcers, and cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!