Mixtures of an amphiphilic perylene bisimide derivative and tetramethoxysilane in the absence of solvents have been found to exhibit stable columnar liquid-crystalline phases which transform into macroscopically oriented nanoporous silica films as a result of simple mechanical shearing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c2cc36306b | DOI Listing |
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
Solid-state Li-ion batteries are recognized as highly promising energy storage devices due to their ability to overcome issues related to the inferior cycle life and potential risks of traditional liquid Li-ion batteries. However, developing solid-state electrolytes with fast Li-ion conductivity continues to be a major challenge. In this study, we present a family of quasi-solid-state electrolytes (QSSEs) synthesized by confining liquid electrolytes within a N-rich porous carbon sponge, exhibiting superior Li-ion conduction for solid-state battery applications.
View Article and Find Full Text PDFNucleic Acids Res
December 2024
MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
The ciliate Tetrahymena thermophila is a well-established unicellular model eukaryote, contributing significantly to foundational biological discoveries. Despite its acknowledged importance, current studies on Tetrahymena biology face challenges due to gene annotation inaccuracy, particularly the notable absence of untranslated regions (UTRs). To comprehensively annotate the Tetrahymena macronuclear genome, we collected extensive transcriptomic data spanning various cell stages.
View Article and Find Full Text PDFACS Appl Nano Mater
November 2024
Institute of Solid State Physics, Graz University of Technology, Graz 8010, Austria.
Understanding the structure of thin films is essential for successful applications of metal-organic frameworks (MOFs), such as low k-dielectrics in electronic devices. This study focuses on the thin film formation of the 3D nanoporous MOF Cu(bdc)(dabco). The thin films are prepared by a layer-by-layer technique with varying deposition cycles (1 to 50).
View Article and Find Full Text PDFACS Earth Space Chem
November 2024
Department of Earth Sciences, Utrecht University, Utrecht 3584 CB, The Netherlands.
Nat Commun
November 2024
Barrer Centre, Chemical Engineering Department, Imperial College London, London, UK.
Metal‒organic frameworks (MOFs) are nanoporous crystalline materials with enormous potential for further development into a new class of high-performance membranes. However, the preparation of defect-free and water-stable MOF membranes with high permselectivity and good structural integrity remains a challenge. Herein, we demonstrate a dual-source seeding (DS) approach to produce high-performance, water-stable MOF-303 membranes with hollow fiber (HF) geometry and preferentially tailored crystallographic orientation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!