Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Disease outbreaks caused by viral pathogens constitute a major limitation to development of the shrimp aquaculture industry. Many research have been conducted to better understand how host shrimp respond to viral infections with the aim of using the gained knowledge to develop better strategies for disease management and control. One approach has been to study the interactions between host and viral proteins, and particularly host virus-binding proteins that might play an important role in the viral infection process. Within the past five years, increasing numbers of virus-binding proteins (VBPs) have been reported in shrimp. Characterization of these molecules has emphasized on their potential therapeutic applications by demonstrating their activities in inhibition of viral replication via in vivo neutralization assay. However, signaling to induce innate antiviral immune responses as a consequence of binding between viral proteins and VBPs remain to be fully elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fsi.2012.09.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!