Background: Posttranslational modifications (PTMs) greatly expand the function and regulation of proteins, and glycosylation is the most abundant and diverse PTM. Of the many different types of protein glycosylation, one is quite unique; GalNAc-type (or mucin-type) O-glycosylation, where biosynthesis is initiated in the Golgi by up to twenty distinct UDP-N-acetyl-α-d-galactosamine:polypeptide N-acetylgalactosaminyltransferases (GalNAc-Ts). These GalNAc-Ts are differentially expressed in cells and have different (although partly overlapping) substrate specificities, which provide for both unique functions and considerable redundancy. Recently we have begun to uncover human diseases associated with deficiencies in GalNAc-T genes (GALNTs). Thus deficiencies in individual GALNTs produce cell and protein specific effects and subtle distinct phenotypes such as hyperphosphatemia with hyperostosis (GALNT3) and dysregulated lipid metabolism (GALNT2). These phenotypes appear to be caused by deficient site-specific O-glycosylation that co-regulates proprotein convertase (PC) processing of FGF23 and ANGPTL3, respectively.

Scope Of Review: Here we summarize recent progress in uncovering the interplay between human O-glycosylation and protease regulated processing and describes other important functions of site-specific O-glycosylation in health and disease.

Major Conclusions: Site-specific O-glycosylation modifies pro-protein processing and other proteolytic events such as ADAM processing and thus emerges as an important co-regulator of limited proteolytic processing events.

General Significance: Our appreciation of this function may have been hampered by our sparse knowledge of the O-glycoproteome and in particular sites of O-glycosylation. New strategies for identification of O-glycoproteins have emerged and recently the concept of SimpleCells, i.e. human cell lines made deficient in O-glycan extension by zinc finger nuclease gene targeting, was introduced for broad O-glycoproteome analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbagen.2012.09.014DOI Listing

Publication Analysis

Top Keywords

site-specific o-glycosylation
12
o-glycosylation
7
processing
6
site-specific
4
site-specific protein
4
protein o-glycosylation
4
o-glycosylation modulates
4
modulates proprotein
4
proprotein processing
4
processing deciphering
4

Similar Publications

The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in hundreds of millions of infections and millions of deaths globally. Although vaccination campaigns are mitigating the pandemic, emerging viral variants continue to pose challenges. The spike (S) protein of SARS-CoV-2 plays a critical role in viral entry by binding to the angiotensin-converting enzyme 2 (ACE2) receptor, making both proteins essential targets for therapeutic and vaccine development.

View Article and Find Full Text PDF

Protein glycosylation is a complex post-translational modification that is generally classified as N- or O-linked. Site-specific analysis of glycopeptides is accomplished with a variety of fragmentation methods, depending on the type of glycosylation being investigated and the instrumentation available. For instance, collisional dissociation methods are frequently used for N-glycoproteomic analysis with the assumption that one N-sequon exists per tryptic peptide.

View Article and Find Full Text PDF

Clinical glycoprotein mass spectrometry: The future of disease detection and monitoring.

J Mass Spectrom

September 2024

Translational Glycobiology Institute, Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.

Protein glycosylation is the co- and/or post-translational modification of proteins with oligosaccharides (glycans). This process is not template based and can introduce a heterogeneous set of glycan modifications onto substrate proteins. Glycan structures preserve biomolecular information from the cell, with glycoproteins from different cell types and tissues displaying distinct patterns of glycosylation.

View Article and Find Full Text PDF

Site-Specific Glycosylation Analysis of Human and Murine Fcγ Receptor II Family Members Reveals Variant-Specific -Glycosylation.

J Proteome Res

August 2024

Translational Glycobiology Institute, Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, United States.

Fcγ-receptors (FcγRs) including FcγRII (CD32) gene family members are expressed on leukocytes, bind the crystallizable fragment (Fc) region of immunoglobulin G (IgG), and bridge humoral and cellular immunity. FcγRIIA and FcγRIIB have opposing roles, with the former responsible for activation and the latter for inhibition of immune cell signaling and effector functions. The extracellular domains of human and murine FcγRIIs share multiple conserved glycosylation sites.

View Article and Find Full Text PDF

Protein glycosylation is a complex post-translational modification that is generally classified as N- or O-linked. Site-specific analysis of glycopeptides is accomplished with a variety of fragmentation methods, depending on the type of glycosylation being investigated and the instrumentation available. For instance, collisional dissociation methods are frequently used for N-glycoproteomic analysis with the assumption that one N-sequon exists per tryptic peptide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!