Calcium mishandling in diastolic dysfunction: mechanisms and potential therapies.

Biochim Biophys Acta

Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.

Published: April 2013

Diastolic dysfunction is characterized by slow or incomplete relaxation of the ventricles during diastole, and is an important contributor to heart failure pathophysiology. Clinical symptoms include fatigue, shortness of breath, and pulmonary and peripheral edema, all contributing to decreased quality of life and poor prognosis. There are currently no therapies available that directly target the heart pump defects in diastolic function. Calcium mishandling is a hallmark of heart disease and has been the subject of a large body of research. Efforts are ongoing in a number of gene therapy approaches to normalize the function of calcium handling proteins such as sarcoplasmic reticulum calcium ATPase. An alternative approach to address calcium mishandling in diastolic dysfunction is to introduce calcium buffers to facilitate relaxation of the heart. Parvalbumin is a calcium binding protein found in fast-twitch skeletal muscle and not normally expressed in the heart. Gene transfer of parvalbumin into normal and diseased cardiac myocytes increases relaxation rate but also markedly decreases contraction amplitude. Although parvalbumin binds calcium in a delayed manner, it is not delayed enough to preserve full contractility. Factors contributing to the temporal nature of calcium buffering by parvalbumin are discussed in relation to remediation of diastolic dysfunction. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3586938PMC
http://dx.doi.org/10.1016/j.bbamcr.2012.09.007DOI Listing

Publication Analysis

Top Keywords

diastolic dysfunction
16
calcium mishandling
12
calcium
9
mishandling diastolic
8
function calcium
8
diastolic
5
heart
5
dysfunction
4
dysfunction mechanisms
4
mechanisms potential
4

Similar Publications

Left atrial shunting devices: why, what, how, and… when?

Heart Fail Rev

January 2025

Department of Cardiology, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy.

Left atrial (LA) hypertension is central in the pathophysiology of heart failure (HF) in general and of HF with preserved ejection fraction (HFpEF) in particular. Despite approved treatments, a number of HF patients continue experiencing disabling symptoms due to LA hypertension, causing pulmonary congestion, pulmonary hypertension, and right heart dysfunction, at rest and/or during exercise. LA decompression therapies, i.

View Article and Find Full Text PDF

Background: Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD.

View Article and Find Full Text PDF

A novel exercise protocol for cardiac rehabilitation aerobic (CRA) has been developed by Hebei Sport University, demonstrating efficacy in patients with coronary heart disease (CHD). The objective of this study was to evaluate the impact of CRA on precise cardiac rehabilitation (CR) for CHD patients presenting with stable angina pectoris. The study cohort comprised patients with stable angina who were categorized into three groups: the CRA group (n = 35), the power bicycles (PB) group (n = 34), and the control group (n = 43).

View Article and Find Full Text PDF

: Left ventricular aneurysm (LVA) causes geometric changes, including reduced systolic function and a more spherical shape, which is quantified by the sphericity index (SI), the ratio of the short to long axis in the apical four-chamber view. This study aimed to assess SI's value in A-LVA and B-LVA, identify influencing factors, and evaluate its clinical relevance. : This clinical study included 54 patients with post-infarction LVA and used echocardiography to determine LVA locations (A-LVA near the apex and B-LVA in the basal segments), with SI and other echocardiographic measures assessed in both systole and diastole for the entire cohort and stratified by A-LVA and B-LVA groups.

View Article and Find Full Text PDF

Cirrhotic cardiomyopathy (CCM) is a diagnostic entity defined as cardiac dysfunction (diastolic and/or systolic) in patients with liver cirrhosis, in the absence of overt cardiac disorder. Pathogenically, CCM stems from a combination of systemic and local hepatic factors that, through hemodynamic and neurohormonal changes, affect the balance of cardiac function and lead to its remodeling. Vascular changes in cirrhosis, mostly driven by portal hypertension, splanchnic vasodilatation, and increased cardiac output alongside maladaptively upregulated feedback systems, lead to fluid accumulation, venostasis, and cardiac dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!