2,2,2-Trifuoroethanol (TFE)-induced conformational structure change of a β-sheet legume lectin, soybean agglutinin (SBA) has been investigated employing its exclusive structural forms in quaternary (tetramer) and tertiary (monomer) states, by far- and near-UV CD, FTIR, fluorescence, low temperature phosphorescence and chemical modification. Far-UV CD results show that, for SBA tetramer, native atypical β-conformation transforms to a highly α-helical structure, with the helical content reaching 57% in 95% TFE. For SBA monomer, atypical β-sheet first converts to typical β-sheet at low TFE concentration (10%), which then leads to a nonnative α-helix at higher TFE concentration. From temperature-dependent studies (5-60 °C) of TFE perturbation, typical β-sheet structure appears to be less stable than atypical β-sheet and the induced helix entails reduced thermal stability. The heat induced transitions are reversible except for atypical to typical β-sheet conversion. FTIR results reveal a partial α-helix conversion at high protein concentration but with quantitative yield. However, aggregation is detected with FTIR at lower TFE concentration, which disappears in more TFE. Near-UV CD, fluorescence and phosphorescence studies imply the existence of an intermediate with native-like secondary and tertiary structure, which could be related to the dissociation of tetramer to monomer. This has been further supported by concentration dependent far-UV CD studies. Chemical modification with N-bromosuccinimide (NBS) shows that all six tryptophans per monomer are solvent-exposed in the induced α-helical conformation. These results may provide novel and important insights into the perturbed folding problem of SBA in particular, and β-sheet oligomeric proteins in general.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biochi.2012.09.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!