Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504+1G>A) of RMND1 (required for meiotic nuclear division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of the mutant fibroblasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for understanding the function of this protein in mitochondrial protein translation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3484479 | PMC |
http://dx.doi.org/10.1016/j.ajhg.2012.08.019 | DOI Listing |
Free Radic Biol Med
January 2025
Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, Sevilla, Spain; CIBERER, U729, Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
The interference of the expression of each of the genes involved in the synthesis of coenzyme Q (CoQ) in Drosophila melanogaster can help to understand the pathophysiology of CoQ-dependent mitochondrial diseases in humans. We have knocked-down all genes involved in the CoQ biosynthesis pathway at different temperatures to induce depletion of CoQ at different levels throughout the body and in a tissue-specific manner. The efficiency of the knockdowns was quantified by Q-RTPCR and determination of CoQ levels by HPLC-UV+ECD.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFPathogens
January 2025
Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada 22860, BC, Mexico.
is the parasite responsible for Chagas disease, which has a significant amount of genetic diversification among the species complex. Many efforts are routinely made to characterize the genetic lineages of circulating in a particular geographic area. However, the genetic loci used to typify the genetic lineages of have not been consistent between studies.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Biomedicine Research Center of Strasbourg (CRBS), UR 3072, "Mitochondria, Oxidative Stress and Muscle Plasticity", Faculty of Medicine, University of Strasbourg, 67000 Strasbourg, France.
Peripheral blood mononuclear cells' (PBMCs) mitochondrial respiration is impaired and likely involved in myocardial injury and heart failure pathophysiology, but its response to acute and severe hypoxia, often associated with such diseases, is largely unknown in humans. We therefore determined the effects of acute hypoxia on PBMC mitochondrial respiration and ROS production in healthy volunteers exposed to controlled oxygen reduction, achieving an inspired oxygen fraction of 10.5%.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
Radiation therapy (RT) is the cornerstone treatment for prostate cancer; however, it frequently induces gastrointestinal and genitourinary toxicities that substantially diminish the patients' quality of life. While many individuals experience transient side effects, a subset endures persistent, long-term complications. A promising strategy to mitigate these toxicities involves enhancing tumor radiosensitivity, potentially allowing for lower radiation doses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!