Photoconductivity and photoluminescence under bias in GaInNAs/GaAs MQW p-i-n structures.

Nanoscale Res Lett

School of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, UK.

Published: September 2012

The low temperature photoluminescence under bias (PLb) and the photoconductivity (PC) of a p-i-n GaInNAs/GaAs multiple quantum well sample have been investigated. Under optical excitation with photons of energy greater than the GaAs bandgap, PC and PLb results show a number of step-like increases when the sample is reverse biased. The nature of these steps, which depends upon the temperature, exciting wavelength and intensity and the number of quantum wells (QWs) in the device, is explained in terms of thermionic emission and negative charge accumulation due to the low confinement of holes in GaInNAs QWs. At high temperature, thermal escape from the wells becomes much more dominant and the steps smear out.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3479062PMC
http://dx.doi.org/10.1186/1556-276X-7-539DOI Listing

Publication Analysis

Top Keywords

photoluminescence bias
8
photoconductivity photoluminescence
4
bias gainnas/gaas
4
gainnas/gaas mqw
4
mqw p-i-n
4
p-i-n structures
4
structures low
4
low temperature
4
temperature photoluminescence
4
bias plb
4

Similar Publications

Strong Enhancement of Light Emission in Core-Shell InGaN/GaN Multi-Quantum-Well Nanowire Light-Emitting Diodes by Incorporating Graphene Quantum Dots.

ACS Appl Mater Interfaces

January 2025

Department of Applied Physics and Integrated Education Institute for Frontier Science and Technology (BK21 Four), Kyung Hee University, Yongin 17104, Korea.

One-dimensional (1D) vertical nitrides are highly attractive for light-emitting diode (LED) applications because they are useful for overcoming the drawbacks of conventional GaN planar structures. However, the internal quantum efficiency (IQE) of GaN multi-quantum-well (MQW) nanowire (NW) LEDs, typical 1D GaN structures, is still too low to replace standard planar LEDs. Here, we report a phenomenon of light amplification from core-shell InGaN/GaN NW LEDs by incorporating graphene quantum dots (GQDs).

View Article and Find Full Text PDF

Recently, geometry-induced quantum effects in a new quasi-1D system, or nanograting (NG) layers, were introduced and investigated. Dramatic changes in band structure and unconventional photoluminescence effects were found in silicon quantum wells with high-energy barriers. Nanograting metal-semiconductor junctions were fabricated and investigated.

View Article and Find Full Text PDF

It is proven through transmission electron microscope (TEM) analysis that solar sensitizer CuSnS (CTS) dots prepared via the hot-injection route are nonspherical, polyhedral nanocrystals with the size of ∼11 nm. CTS dots were deposited into a porous TiO layer to form CTS/TiO, an effective type II heterojunction in photoanodes. The electronic and energy band structures of TiO and CTS were studied by the plane-wave ultrasoft pseudopotential method based on density functional theory (DFT) and verified by ultraviolet-visible (UV-vis) spectroscopy.

View Article and Find Full Text PDF

Enhanced photoelectric desalination of CoO@NC/BiVO photoanode via in-situ construction of hole transport layer.

J Colloid Interface Sci

February 2025

State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, PR China. Electronic address:

The solar-driven photoelectrochemical desalination (SD-PED) technology, as a new emerging desalination technique, has been developed and attracted the increasing attention. However, practical application remains hampered by several constraints, including the rapid deterioration of photocurrent, and the long-term stability of system. In this research, MOF-derived nitrogen-doped carbon@CoO/BVO (CoO@NC/BVO) heterostructured photoanode was design for efficient and durable solar driven redox desalination.

View Article and Find Full Text PDF

Carbon dots (CDs) are zero-dimensional carbon nanomaterials that have been subject of considerable interest due to their remarkable electronic and optical characteristics. Their adjustable properties have gathered attention in different fields, including biological sensing, drug delivery, photodynamic therapy, photocatalysis, solar cells, and latent fingerprint development. In forensic science, the frequently reported outstanding photoluminescence behavior and biocompatibility of CDs are particularly important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!