Viral haemorrhagic septicaemia (VHS), caused by the novirhabdovirus viral haemorrhagic septicaemia virus (VHSV), causes significant economic problems to European rainbow trout, Oncorhynchus mykiss (Walbaum), production. The virus isolates can be divided into four distinct genotypes with additional subgroups. The main source of outbreaks in European rainbow trout farming is sublineage Ia isolates. Recently, this group of isolates has been further subdivided in to two subclades of which the Ia-2 consists of isolates occurring mainly in Continental Europe outside of Denmark. In this study, we sequenced the full-length G-gene sequences of 24 VHSV isolates that caused VHS outbreaks in Polish trout farms between 2005 and 2009. All these isolates were identified as genotype Ia-2; they divided however into two genetically distinct subgroups, that we name Pol I and Pol II. The Pol I isolates mainly caused outbreaks in the southern part of Poland, while Pol II isolates predominantly were sampled in the north of Poland, although it seems that they have been transmitted to other parts of the country. Molecular epidemiology was used for characterization of transmission pathways. This study shows that a main cause of virus transmission appears to be movement of fish. At least in Polish circumstances trading practices appear to have significant impact on spreading of VHSV infection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfd.12004 | DOI Listing |
Clin Cancer Res
January 2025
University of Leeds, Leeds, United Kingdom.
Background: Effective treatment for patients with metastatic cancer is limited, particularly for colorectal cancer patients with metastatic liver lesions (mCRC), where accessibility to numerous tumours is essential for favourable clinical outcomes. Oncolytic viruses (OVs) selectively replicate in cancer cells; however, direct targeting of inaccessible lesions is limited when using conventional intravenous or intratumoural administration routes.
Methods: We conducted a multi-centre, dose-escalation, phase I study of vaccinia virus, TG6002, via intrahepatic artery (IHA) delivery in combination with the oral pro-drug 5-fluorocytosine to fifteen mCRC patients.
Alzheimers Dement
December 2024
University of Colorado School of Medicine, Aurora, CO, USA.
Background: Varicella zoster virus (VZV) reactivation, manifesting as herpes zoster, increases dementia risk. Herein, we review the literature supporting the biological plausibility of VZV contributing to AD pathologies and examine the unique ability of VZV to induce amylin that has been found in blood vessels and parenchyma of AD patients.
Method: We conducted a literature review on VZV and dementia to elucidate a potential model for how VZV reactivation intersects with AD.
Alzheimers Dement
December 2024
Tulane National Primate Research Center, Tulane University, Coviington, LA, USA.
Background: Varicella zoster virus (VZV) is latent in ganglionic neurons in >90% of the world population and reactivates to produce herpes zoster in older adults. Zoster increases dementia risk, of which Alzheimer's disease (AD) is the most common. However, a critical barrier in studying the mechanisms by which VZV contributes to dementia is that VZV is an exclusively human virus.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The University of Texas Health Science Center at Houston, Houston, TX, USA.
Background: The persistent neurological symptoms seen in long COVID survivors are attributed to immune system dysfunctions and changes in the microbiome induced by SARS-CoV-2 infection. In addition to the initial respiratory manifestations, a significant portion of COVID-19 patients present with neurodegenerative symptoms. Our hypothesis suggests that disruptions in inflammatory signals and alterations in the gut microbiome post-COVID-19 play pivotal roles in the development of neurodegenerative complications among individuals experiencing prolonged effects of the disease.
View Article and Find Full Text PDFJ Extracell Vesicles
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, China.
Japanese encephalitis virus (JEV) is a neurotropic zoonotic pathogen that poses a serious threat to public health. Currently, there is no specific therapeutic agent available for JEV infection, primarily due to the complexity of its infection mechanism and pathogenesis. Extracellular vesicles (EVs) have been known to play an important role in viral infection, but their specific functions in JEV infection remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!