The effect of polymer molecular weight and solution pH on the surface properties of the anionic surfactant sodium dodecylsulfate, SDS, and a range of small linear poly(ethyleneimine), PEI, polyelectrolytes of different molecular weights has been studied by surface tension, ST, and neutron reflectivity, NR, at the air-solution interface. The strong SDS-PEI interaction gives rise to a complex pattern of ST behavior which depends significantly on solution pH and PEI molecular weight. The ST data correlate broadly with the more direct determination of the surface adsorption and surface structure obtained using NR. At pH 3, 7, and 10, the strong SDS-PEI interaction results in a pronounced SDS adsorption at relatively low SDS and PEI concentrations, and is largely independent of pH and PEI molecular weight (for PEI molecular weights on the order of 320, 640, and 2000 Da). At pH 7 and 10, there are combinations of SDS and PEI concentrations for which surface multilayer structures form. For the PEI molecular weights of 320 and 640 Da, these surface multilayer structures are most well-developed at pH 10 and less so at pH 7. At the molecular weight of 2000 Da, they are poorly developed at both pH 7 and 10. This evolution in the surface structure with molecular weight is consistent with previous studies, (1) where for a molecular weight of 25,000 Da no multilayer structures were observed for the linear PEI. The results show the importance with increasing polymer molecular weight of the entropic contribution due to the polymer flexibility in control of the surface multilayer formation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la302444bDOI Listing

Publication Analysis

Top Keywords

molecular weight
32
pei molecular
16
polymer molecular
12
molecular weights
12
surface multilayer
12
multilayer structures
12
molecular
10
surface
9
weight
8
weight solution
8

Similar Publications

Capacitive-based radiofrequency (Rf) radiation at 27 MHz offers a non-invasive approach for inducing hyperthermia, making it a promising technique for thermal cancer therapy applications. To achieve focused and site-specific hyperthermia, external material is required that efficiently convert Rf radiation into localized heat. Nanomaterials capable of absorbing Rf energy and convert into heat for targeted ablation are of critical importance.

View Article and Find Full Text PDF

The domesticated silkworm, Bombyx mori, is crucial for global silk production, which is a significant economic activity supporting millions of livelihoods worldwide. Beyond traditional silk production, the growing demand for insect larvae in cosmetics, biomedical products, and animal feed underscores the need to enhance B. mori productivity.

View Article and Find Full Text PDF

The aging population necessitates a critical need for medical devices, where polymers-based surface lubrication coating is essential for optimal functionality. In fact, lubrication and mechanical requirements vary depending on the service environment of different medical devices. Until now, key mean is still blank for general preparation of hydrophilic polymers-based lubrication coatings with on-demand mechanics and lubricity.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are major components of Gram-negative bacteria. LPS not only induce endotoxemia and inflammation, but also contribute to various diseases. In experimental settings, LPS administration serves as a model for acute inflammatory responses.

View Article and Find Full Text PDF

Background: Plasma exchange (PE) removes high-molecular-weight substances and is sometimes used for antineutrophil cytoplasmic antibody-associated vasculitis (AAV) with alveolar hemorrhage. Hypotension during PE is rare, except in allergic cases. We report a case of shock likely caused by increased pulmonary vascular resistance (PVR) during PE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!