Attractors generated from switching unstable dissipative systems.

Chaos

División de Matemáticas Aplicadas, IPICyT, Camino a la Presa San José 2055 col. Lomas 4a Sección, 78216 San Luis Potosí, SLP, Mexico.

Published: September 2012

In this paper, we present a class of 3-D unstable dissipative systems, which are stable in two components but unstable in the other one. This class of systems is motivated by whirls, comprised of switching subsystems, which yield strange attractors from the combination of two unstable "one-spiral" trajectories by means of a switching rule. Each one of these trajectories moves around two hyperbolic saddle equilibrium points. Both theoretical and numerical results are provided for verification and demonstration.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4742338DOI Listing

Publication Analysis

Top Keywords

unstable dissipative
8
dissipative systems
8
attractors generated
4
generated switching
4
unstable
4
switching unstable
4
systems paper
4
paper class
4
class 3-d
4
3-d unstable
4

Similar Publications

Magnetic-proximity-induced anomalous hall effect at the EuO/SbTeinterface.

J Phys Condens Matter

December 2024

Department of Physics, Indian Institute of Technology Delhi, DEPRTMENT OF PHYSICS, IIT DELHI, HAUZ KHAS, New Delhi, Delhi, 110016, INDIA.

Time-reversal symmetry breaking of a topological insulator phase generates zero-field edge modes which are the hallmark of the quantum anomalous Hall effect (QAHE) and of possible value for dissipation-free switching or non-reciprocal microwave devices. But present material systems exhibiting the QAHE, such as magnetically doped bismuth telluride and twisted bilayer graphene, are intrinsically unstable, limiting their scalability. A pristine magnetic oxide at the surface of a TI would leave the TI structure intact and stabilize the TI surface, but epitaxy of an oxide on the lower-melting-point chalcogenide presents a particular challenge.

View Article and Find Full Text PDF

New constitutive model and hot processing map for A100 steel based on high-temperature flow behavior.

Heliyon

December 2024

Chongqing Key Laboratory of Advanced Mold Intelligent Manufacturing, College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.

To predict the flow behavior and identify the optimal hot processing window for A100 steel, a constitutive model and a hot processing map were established using true stress-strain data extracted from isothermal compression tests performed at temperatures ranging from 1073 to 1353 K and strain rates varying between 0.01 and 10 s. The results indicate a strong linear trend between the logarithmic stress and the reciprocal of temperature, along with a significant quadratic relationship between the logarithmic stress and logarithmic strain rate.

View Article and Find Full Text PDF

Exploring the impact mechanism of ambient gas properties on laser-induced breakdown spectroscopy to guide the raw signal improvement.

Anal Chim Acta

January 2025

State Key Lab of Power Systems, International Joint Laboratory on Low Carbon Clean Energy Innovation, Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China; Shanxi Research Institute for Clean Energy, Tsinghua University, Shanxi, 030032, China; College of Energy and Electrical Engineering, Qinghai University, Xining, Qinghai, 810016, China. Electronic address:

Background: Laser-induced breakdown spectroscopy (LIBS) has long been regarded as the future superstar for chemical analysis. However, hindered by the fact that the signal source of LIBS is a spatially and temporally unstable plasma that interacts dramatically with ambient gases, LIBS has always suffered from poor signal quality, especially low signal repeatability. Although ambient gases act as one of the most direct and critical factors affecting LIBS signals, a clear understanding on how ambient gas properties impact LIBS signals is still lacking to act as guideline for the signal quality improvement.

View Article and Find Full Text PDF

The Sprott B system.

Chaos

October 2024

TNO Sustainable Urban Mobility and Safety, P.O. Box 96800, 2509 JE The Hague, The Netherlands.

We will consider a thermostatic system, Sprott B, that is a generalization of the well-known one-parameter Sprott A system. Sprott B contains an explicit periodic solution for all positive values of the parameter a. As for Sprott A, we find dissipative KAM tori associated with time-reversal symmetry and canards in dissipative systems.

View Article and Find Full Text PDF

Magneto-Acoustic Field-Induced Unstable Interface of Magnetic Microswarm.

Adv Sci (Weinh)

September 2024

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China.

Research on the interfacial instability of two-phase systems can help in gaining a better understanding of various hydrodynamic instabilities in nature. However, owing to the nonlinear and complex spatiotemporal dynamics of the unstable interface, the instability is challenging to control and suppress. This paper presents a novel interfacial instability of the magnetic microswarm induced by the competition between the destabilizing effect of magnetic field and the stabilizing effect of acoustic field.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!