Particle size and density of a slurry from ultrasonic backscattering measurements at a solid interface.

Rev Sci Instrum

Pacific Northwest National Laboratory, P. O. Box 999, Richland, Washington 99352, USA.

Published: September 2012

The pivotal experiment was performed with a setup in which a plastic cylinder was mounted on the top of a horizontal Rexolite plate and a transducer mounted directly below the cylinder; a single layer of stationary 1588-μm acrylic spheres was placed in the cylinder filled with water. Two well-separated signals were received by the transducer operating in the pulse-echo mode: (1) a signal due to the reflection from water at the interface and (2) a time-delayed signal resulting from the backscattering from the spheres of diameter D. The important observation was that the time delay was equal to 2 D/c using standard notation. A method was developed to use the FFT phase difference between the incident and scattered signals at the interface to determine the time-delay as a function of frequency, the backscattering coefficient M versus frequency, a particle size distribution, and an average value of the diameter. Experimental average diameter results are shown in the square brackets for nominal particle sizes: (1) 1588-μm acrylic spheres [1564 μm], (2) polystyrene spheres for diameters from 200 μm to 500 μm [260 μm-536 μm], (3) suspended slurry of 250-300 μm polystyrene spheres at 2.25 MHz [253 μm], (4) 794 μm [759 μm] and 1588-μm [1623 μm] Teflon spheres, (5) 1588-μm stainless steel spheres [1674 μm], and (6) suspended slurry of 250-300 μm polystyrene spheres [275 μm] at 3.5 MHz for seven volume fractions. Density and particle size measurements were obtained for the latter. For the density measurement, the FFT amplitude of the scattered signal was summed from 2 to 4 MHz for each slurry. A plot of the square root of the FFT-amplitude-sum versus the volume fraction yields a straight line, passing through the origin. A calibration of the experimental setup is obtained by fitting a straight line through the data with error bars. Thus, the volume fraction for a slurry of unknown concentration can be determined by measuring the FFT-amplitude-sum. The density of the slurry is obtained from the volume fraction. These results make it feasible to develop an online and real-time pipeline sensor to measure particle size and slurry density.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4748520DOI Listing

Publication Analysis

Top Keywords

particle size
16
polystyrene spheres
12
volume fraction
12
density slurry
8
1588-μm acrylic
8
spheres
8
acrylic spheres
8
average diameter
8
μm] suspended
8
suspended slurry
8

Similar Publications

Land use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.

View Article and Find Full Text PDF

Real-time monitoring by interferometric light microscopy of phage suspensions for personalised phage therapy.

Sci Rep

December 2024

Pharmacy Department, Hospices Civils de Lyon, Hôpital E. Herriot, Plateforme FRIPHARM, 69437, Lyon, France.

Phage therapy uses viruses (phages) against antibiotic resistance. Tailoring treatments to specific patient strains requires stocks of various highly concentrated purified phages. It, therefore, faces challenges: titration duration and specificity to a phage/bacteria couple; purification affecting stability; and highly concentrated suspensions tending to aggregate.

View Article and Find Full Text PDF

Ventilation and features of the lung environment dynamically alter modeled intrapulmonary aerosol exposure from inhaled electronic cigarettes.

Sci Rep

December 2024

Division of Pulmonary and Critical Care, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1690, USA.

Electronic cigarettes (e-cigs) fundamentally differ from tobacco cigarettes in their generation of liquid-based aerosols. Investigating how e-cig aerosols behave when inhaled into the dynamic environment of the lung is important for understanding vaping-related exposure and toxicity. A ventilated artificial lung model was developed to replicate the ventilatory and environmental features of the human lung and study their impact on the characteristics of inhaled e-cig aerosols from simulated vaping scenarios.

View Article and Find Full Text PDF

The increasing prevalence of dental pathogens and oral cancer calls for new therapeutic agents. Nanoparticle (NPs) based tumor therapy enables precise targeting and controlled drug release, improving anti-cancer treatment efficacy while reducing systemic toxicity. Zinc oxide NPs (ZnO NPs) are notable in nanomedicine for their exceptional physicochemical and biological properties.

View Article and Find Full Text PDF

Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!