Several research groups have attempted to optimize photopolymerization parameters to increase the throughput of scanning based microstereolithography (MSL) systems through modified beam scanning techniques. Efforts in reducing the curing line width have been implemented through high numerical aperture (NA) optical setups. However, the intensity contour symmetry and the depth of field of focus have led to grossly non-vertical and non-uniform curing profiles. This work tries to review the photopolymerization process in a scanning based MSL system from the aspect of material functionality and optical design. The focus has been to exploit the rich potential of photoreactor scanning system in achieving desired fabrication modalities (minimum curing width, uniform depth profile, and vertical curing profile) even with a reduced NA optical setup and a single movable stage. The present study tries to manipulate to its advantage the effect of optimized lower [c] (photoinitiator (PI) concentration) in reducing the minimum curing width to ~10-20 μm even with a higher spot size (~21.36 μm) through a judiciously chosen "monomer-PI" system. Optimization on grounds of increasing E(max) (maximum laser exposure energy at surface) by optimizing the scan rate provides enough time for the monomer or resin to get cured across the entire resist thickness (surface to substrate ~10-100 μm), leading to uniform depth profiles along the entire scan lengths.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4750975DOI Listing

Publication Analysis

Top Keywords

scanning based
12
curing width
12
based microstereolithography
8
optical design
8
material functionality
8
minimum curing
8
uniform depth
8
scanning
5
curing
5
polymer microfabrication
4

Similar Publications

Purpose: Lumbar spinal stenosis (LSS) is a frequently occurring condition defined by narrowing of the spinal or nerve root canal due to degenerative changes. Physicians use MRI scans to determine the severity of stenosis, occasionally complementing it with X-ray or CT scans during the diagnostic work-up. However, manual grading of stenosis is time-consuming and induces inter-reader variability as a standardized grading system is lacking.

View Article and Find Full Text PDF

FAP-targeted PET/CT imaging in patients with breast cancer from a prospective bi-center study: insights into diagnosis and clinic management.

Eur J Nucl Med Mol Imaging

January 2025

Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.

Purpose: To evaluate the diagnostic accuracy and clinical impact of fibroblast activation protein (FAP)-targeted PET/CT imaging in primary and metastatic breast cancer and compare the results with those of standard-of-care imaging (SCI) and [F]FDG PET/CT.

Methods: We prospectively analyzed patients with diagnosed or suspected breast cancer who underwent concomitant FAP-targeted PET/CT (radiotracers including either [Ga]Ga-FAPI-46 or [F]FAPI-42) and [F]FDG PET/CT scans from June 2020 to January 2024 at two medical centers. Breast ultrasound (US) imaging was performed in all treatment-naïve patients as SCI.

View Article and Find Full Text PDF

Unlabelled: Due to increasing antimicrobial resistance and side effects caused by current standard antimicrobial regimens used for treatment of prosthetic joint infection (PJI), alternative options are urgently needed. We aimed to investigate the effect of clindamycin in different exposure strategies against in an mature biofilm model. In short, 7-day biofilms were generated on polystyrene plates and titanium-aluminum-vanadium discs using a clinical PJI isolate.

View Article and Find Full Text PDF

The effect of growth temperature and subsequent annealing on the epitaxy of both single- and few-layer TaSe on Se-terminated GaP(111) substrates is investigated. The selective growth of the 1T and 1H phases is shown up to 1 ML according to X-ray and ultraviolet photoelectron spectroscopies. The 1H monolayer, favored at low temperatures, exhibits a very homogeneous coverage after annealing, while the 1T ML, grown at high temperatures, is characterized by a better in-plane orientation.

View Article and Find Full Text PDF

Purpose: The goal of the study described in this protocol is to build a multimodal artificial intelligence (AI) model to predict abdominal aortic aneurysm (AAA) shrinkage 1 year after endovascular aneurysm repair (EVAR).

Methods: In this retrospective observational multicenter study, approximately 1000 patients will be enrolled from hospital records of 5 experienced vascular centers. Patients will be included if they underwent elective EVAR for infrarenal AAA with initial assisted technical success and had imaging available of the same modality preoperatively and at 1-year follow-up (CTA-CTA or US-US).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!