We describe stable intercalation compounds of the composition xN(2)·WO(3) (x = 0.034-0.039), formed by trapping N(2) in WO(3). The incorporation of N(2) significantly reduced the absorption threshold of WO(3); notably, 0.039N(2)·WO(3) anodes exhibited photocurrent under illumination at wavelengths ≤640 nm with a faradaic efficiency for O(2) evolution in 1.0 M HClO(4)(aq) of nearly unity. Spectroscopic and computational results indicated that deformation of the WO(3) host lattice, as well as weak electronic interactions between trapped N(2) and the WO(3) matrix, contributed to the observed red shift in optical absorption. Noble-gas-intercalated WO(3) materials similar to xN(2)·WO(3) are predicted to function as photoanodes that are responsive to visible light.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja3067622 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!