Morphine and related drugs are widely employed as analgesics despite the side effects associated with their use. Although morphine is thought to mediate analgesia through mu opioid receptors, delta opioid receptors have been implicated in mediating some side effects such as tolerance and dependence. Here we present evidence in rhesus monkeys that morphine, fentanyl, and possibly methadone selectively activate mu-delta heteromers to produce antinociception that is potently antagonized by the delta opioid receptor antagonist, naltrindole (NTI). Studies with HEK293 cells expressing mu-delta heteromeric opioid receptors exhibit a similar antagonism profile of receptor activation in the presence of NTI. In mice, morphine was potently inhibited by naltrindole when administered intrathecally, but not intracerebroventricularly, suggesting the possible involvement of mu-delta heteromers in the spinal cord of rodents. Taken together, these results strongly suggest that, in primates, mu-delta heteromers are allosterically coupled and mediate the antinociceptive effects of three clinically employed opioid analgesics that have been traditionally viewed as mu-selective. Given the known involvement of delta receptors in morphine tolerance and dependence, our results implicate mu-delta heteromers in mediating both antinociception and these side effects in primates. These results open the door for further investigation in humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3447399 | PMC |
http://dx.doi.org/10.1021/cn300049m | DOI Listing |
Int J Neuropsychopharmacol
July 2023
Université Paris Cité, CNRS, Inserm, Pharmacologie et thérapies des addictions, Paris, France.
Background: Evidence has accumulated demonstrating the existence of opioid receptor heteromers, and recent data suggest that targeting these heteromers could reduce opioid side effects while retaining therapeutic effects. Indeed, CYM51010 characterized as a MOR (mu opioid receptor)/DOR (delta opioid receptor) heteromer-preferring agonist promoted antinociception comparable with morphine but with less tolerance. In the perspective of developing these new classes of pharmacological agents, data on their putative side effects are mandatory.
View Article and Find Full Text PDFNeuropharmacology
September 2021
Medical College of Wisconsin, USA. Electronic address:
There is a need to develop a novel analgesic for pain associated with interstitial cystitis/painful bladder syndrome (IC/PBS). The use of the conventional μ-opioid receptor agonists to manage IC/PBS pain is controversial due to adverse CNS effects. These effects are attenuated in benzylideneoxymorphone (BOM), a low-efficacy μ-opioid receptor agonist/δ-opioid receptor antagonist that attenuates thermal pain and is devoid of reinforcing effects.
View Article and Find Full Text PDFBrain Res
April 2021
Department of Physiology, Michigan State University, East Lansing, MI, USA. Electronic address:
The episodic nature of chronic pain can be studied in the rodent model of latent pain sensitization. After remission, central sensitization is opposed by activation of opioid receptors. At the behavioral level, latent pain sensitization is unmasked when pain hypersensitivity is reinstated by opioid receptor (OR) antagonism.
View Article and Find Full Text PDFJ Med Chem
November 2020
Center for Clinical Pharmacology, St Louis College of Pharmacy and Washington University, School of Medicine, St. Louis, Missouri 63110, United States.
In this work, we studied a series of carfentanyl amide-based opioid derivatives targeting the mu opioid receptor (μOR) and the delta opioid receptor (δOR) heteromer as a credible novel target in pain management therapy. We identified a lead compound named that exhibits high G-protein activity at μ-δ heteromers compared to the homomeric δOR or μOR and low β-arrestin2 recruitment activity at all three. Furthermore, exhibits distinct signaling profile, as compared to the previously identified agonist targeting μ-δ heteromers, CYM51010.
View Article and Find Full Text PDFMolecules
September 2020
Centre National de la Recherche Scientifique, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, 67000 Strasbourg, France.
Increasing evidence indicates that native mu and delta opioid receptors can associate to form heteromers in discrete brain neuronal circuits. However, little is known about their signaling and trafficking. Using double-fluorescent knock-in mice, we investigated the impact of neuronal co-expression on the internalization profile of mu and delta opioid receptors in primary hippocampal cultures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!