Posttranscriptional gene silencing (PTGS) mediated by siRNAs is an evolutionarily conserved antiviral defense mechanism in higher plants and invertebrates. In this mechanism, viral-derived siRNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. In Arabidopsis, a key component of RISC is ARGONAUTE1 (AGO1), which not only binds to siRNAs but also carries the RNA slicer activity. At present little is known about posttranslational mechanisms regulating AGO1 turnover. Here we report that the viral suppressor of RNA silencing protein P0 triggers AGO1 degradation by the autophagy pathway. Using a P0-inducible transgenic line, we observed that AGO1 degradation is blocked by inhibition of autophagy. The engineering of a functional AGO1 fluorescent reporter protein further indicated that AGO1 colocalizes with autophagy-related (ATG) protein 8a (ATG8a) positive bodies when degradation is impaired. Moreover, this pathway also degrades AGO1 in a nonviral context, especially when the production of miRNAs is impaired. Our results demonstrate that a selective process such as ubiquitylation can lead to the degradation of a key regulatory protein such as AGO1 by a degradation process generally believed to be unspecific. We anticipate that this mechanism will not only lead to degradation of AGO1 but also of its associated proteins and eventually small RNAs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465452 | PMC |
http://dx.doi.org/10.1073/pnas.1209487109 | DOI Listing |
Sci Rep
January 2025
Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
Platelets are enriched in miRNAs and harbor Ago2 as the principal RNA silencing Argonaute. However, roles in thrombopoiesis and platelet function remain poorly understood. We generated megakaryocyte/platelet-specific Ago2-deleted (Ago2 KO) mice and assessed proteomic and functional effects.
View Article and Find Full Text PDFChildren (Basel)
January 2025
Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan.
Background: Argonautes (AGOs) are a type of protein that degrade specific messenger RNAs, consequently reducing the expression of a specific gene. These proteins consist of small, single-stranded RNA or DNA and may provide a route for detecting and silencing complementary mobile genetic elements. In this research, we investigated which AGO(s) were involved in Kawasaki disease (KD).
View Article and Find Full Text PDFMol Cancer
January 2025
Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, 510630, P. R. China.
Nat Struct Mol Biol
January 2025
Copenhagen Plant Science Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
ARGONAUTE (AGO) proteins bind to small non-coding RNAs to form RNA-induced silencing complexes. In the RNA-bound state, AGO is stable while RNA-free AGO turns over rapidly. Molecular features unique to RNA-free AGO that allow its specific recognition and degradation remain unknown.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
While much is known about miRNA biogenesis and canonical miRNA targeting, relatively less is understood about miRNA decay. The major miRNA decay pathway in metazoans is mediated through target-directed miRNA degradation (TDMD), in which certain RNAs can "trigger" miRNA decay. All known triggers for TDMD base pair with the miRNA seed, and extensively base pair on the miRNA 3' end, a pattern that supposedly induces a TDMD-competent conformational change of Argonaute (Ago), allowing for miRNA turnover.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!