Scaffold proteins form a framework to organize signal transduction by binding multiple partners within a signaling pathway. This shapes the output of signal responses as well as providing specificity and localization. The Membrane Associated Guanylate Kinases (MAGuKs) are scaffold proteins at cellular junctions that localize cell surface receptors and link them to downstream signaling enzymes. Scaffold proteins often contain protein-binding domains that are connected in series by disordered linkers. The tertiary structure of the folded domains is well understood, but describing the dynamic inter-domain interactions (the superteritary structure) of such multidomain proteins remains a challenge to structural biology. We used 65 distance restraints from single-molecule fluorescence resonance energy transfer (smFRET) to describe the superteritary structure of the canonical MAGuK scaffold protein PSD-95. By combining multiple fluorescence techniques, the conformational dynamics of PSD-95 could be characterized across the biologically relevant timescales for protein domain motions. Relying only on a qualitative interpretation of FRET data, we were able to distinguish stable interdomain interactions from freely orienting domains. This revealed that the five domains in PSD-95 partitioned into two independent supramodules: PDZ1-PDZ2 and PDZ3-SH3-GuK. We used our smFRET data for hybrid structural refinement to model the PDZ3-SH3-GuK supramodule and include explicit dye simulations to provide complete characterization of potential uncertainties inherent to quantitative interpretation of FRET as distance. Comparative structural analysis of synaptic MAGuK homologues showed a conservation of this supertertiary structure. Our approach represents a general solution to describing the supertertiary structure of multidomain proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3465453 | PMC |
http://dx.doi.org/10.1073/pnas.1200254109 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Center of Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway.
Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production , and the development of foreign body reaction (FBR) .
View Article and Find Full Text PDFBiomed Mater
January 2025
School of Food Science and Technology, Dalian Polytechnic University, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian 116034, People's Republic of China.
Bone morphogenetic protein 2 (BMP-2) and a polysaccharide (SUP) were embedded in the calcium phosphate cement (CPC) scaffold, and the bone repair ability was evaluated. The new scaffolds were characterized using x-ray diffraction, Fourier transform-infrared, scanning electron microscopy, and energy dispersive spectroscopy analyses. CPC-BMP2-SUPH scaffold promoted the BMP-2 release by 1.
View Article and Find Full Text PDFOnco Targets Ther
January 2025
Department of Pharmacology, adMare BioInnovations, Montréal, Quebec, H4S 1Z9, Canada.
The gene is nearly ubiquitously subjected to activating mutation in pancreatic adenocarcinomas (PDAC), occurring at a frequency of over 90% in tumors. Mutant KRAS drives sustained signaling through the MAPK pathway to affect frequently disrupted cancer phenotypes including transcription, proliferation and cell survival. Recent research has shown that PDAC tumor growth and survival required a guanine nucleotide exchange factor for RAS homolog family member A (RhoA) called GEF-H1.
View Article and Find Full Text PDFACS Appl Nano Mater
January 2025
Atomic Manipulation and Spectroscopy Group (AMS), Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Bellaterra, 08193 Barcelona, Spain.
Despite the outstanding progress in photonic sensor devices, a major limitation for its application as label-free biosensors for biomedical analysis lies in the surface biofunctionalization step, that is, the reliable immobilization of the biorecognition element onto the sensor surface. Here, we report the integration of bottom-up synthesized nanoporous graphene onto bimodal waveguide interferometric biosensors as an atomically precise biofunctionalization scaffold. This combination leverages the high sensitivity of bimodal waveguide interferometers and the large functional surface area of nanoporous graphene to create highly sensitive, selective, and robust biosensors for the direct immunoassay detection of C-reactive protein (CRP), an inflammatory biomarker widely used in the clinical diagnosis of infections and sepsis.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.
Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!