Analysis of the cellular distributions of coenzymes including NADH may aid in understanding a cells metabolic status. We altered serum concentration (0, 2, and 10%) to induce living myoblast cells to undergo the early stages of differentiation. Through microscopy and phasor-FLIM, we spatially mapped and identified variations in the distribution of free and bound NADH. Undifferentiated cells displayed abundant free NADH within the nucleus along with specific regions of more bound NADH. Complete serum starvation dramatically increased the fraction of bound NADH in the nucleus, indicating heightened requirement for transcriptional processes. In comparison, cells exposed to 2% serum exhibited intermediate free nuclear NADH fraction. Overall our results suggest an order of events in which a cell metabolic status alters significantly during the early stages of serum induced differentiation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3635844PMC
http://dx.doi.org/10.1002/jemt.22121DOI Listing

Publication Analysis

Top Keywords

bound nadh
12
myoblast cells
8
metabolic status
8
early stages
8
nadh nucleus
8
nadh
7
cells
5
phasor-flim analysis
4
analysis nadh
4
nadh distribution
4

Similar Publications

Integrative Omics and Gene Knockout Analyses Suggest a Possible Gossypol Detoxification Mechanism and Potential Key Regulatory Genes of a Ruminal Strain.

J Agric Food Chem

January 2025

State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Gossypol removal is crucial for the resourceful utilization of cottonseed meals in the food and feed industries. Herein, we investigated the comprehensive detoxification mechanism of a gossypol-tolerant strain of (WK331) newly isolated from the rumen. Biodegradation assays showed that WK331 removes over 80% of free gossypol, of which 50% was biodegraded and 30% was converted into bound gossypol.

View Article and Find Full Text PDF

Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation and halogenation. The monooxygenase components require a separate flavin reductase, which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase.

View Article and Find Full Text PDF

Structural analysis of ExaC, an NAD-dependent aldehyde dehydrogenase, from Pseudomonas aeruginosa.

Biochem Biophys Res Commun

January 2025

Department of Life Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea. Electronic address:

The opportunistic pathogen Pseudomonas aeruginosa (Pa) utilizes ethanol as an energy source, however, ethanol metabolism generates acetaldehyde, a toxic byproduct. To mitigate this toxicity, P. aeruginosa employs aldehyde dehydrogenases (ALDHs) to oxidize acetaldehyde into less harmful compounds.

View Article and Find Full Text PDF

Nicotinamide Riboside and CD38: Covalent Inhibition and Live-Cell Labeling.

JACS Au

November 2024

Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089, United States.

Nicotinamide adenine dinucleotide (NAD) is required for a myriad of metabolic, signaling, and post-translational events in cells. Its levels in tissues and organs are closely associated with health conditions. The homeostasis of NAD is regulated by biosynthetic pathways and consuming enzymes.

View Article and Find Full Text PDF

The proline catabolic pathway consisting of proline dehydrogenase (PRODH) and L-glutamate-γ-semialdehyde (GSAL) dehydrogenase (GSALDH) catalyzes the four-electron oxidation of L-proline to L-glutamate. Chemical probes to these enzymes are of interest for their role in cancer and inherited metabolic disease. Here, we report the results of a crystallographic fragment-screening campaign targeting both enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!