The terminal rhenium(I) phosphaethynolate complex [Re(PCO)(CO)(2)(triphos)] has been prepared in a salt metathesis reaction from Na(OCP) and [Re(OTf)(CO)(2)(triphos)]. The analogous isocyanato complex [Re(NCO)(CO)(2)(triphos)] has been likewise prepared for comparison. The structure of both complexes was elucidated by X-ray diffraction studies. While the isocyanato complex is linear, the phosphaethynolate complex is strongly bent around the pnictogen center. Computations including natural bond orbital (NBO) theory, natural resonance theory (NRT), and natural population analysis (NPA) indicate that the isocyanato complex can be viewed as a classic Werner-type complex, that is, with an electrostatic interaction between the Re(I) and the NCO group. The phosphaethynolate complex [Re(P=C=O)(CO)(2)(triphos)] is best described as a metallaphosphaketene with a Re(I)-phosphorus bond of highly covalent character.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201202590DOI Listing

Publication Analysis

Top Keywords

phosphaethynolate complex
12
isocyanato complex
12
complex
7
synthesis characterization
4
characterization terminal
4
terminal [rexcoco2triphos]
4
[rexcoco2triphos] x=n
4
x=n isocyanate
4
isocyanate versus
4
phosphaethynolate
4

Similar Publications

Exploring Stibanyl Ligand for Accessing Arsinidene and Arsaketene Adducts, and Phosphaketene.

Inorg Chem

January 2025

College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China.

The salt metathesis reaction involving a diamine-based antimony chloride precursor with sodium arsaethynolate in the presence of PMe leads to the formation of stibanyl-functionalized PMe-arsinidene (). Detailed analyses through single-crystal X-ray diffraction and density functional theory of confirm the presence of covalent Sb-As bonds and reveal its polarized nature with a multiple-bond character. In contrast to the formation of complex , substituting PMe with xylyl isocyanide or 1,3-diisopropyl-4,5-dimethyl-imidazolin-2-ylidene () produces an isocyanide-arsinidene adduct () and an -arsaketene complex (), respectively.

View Article and Find Full Text PDF

Salt metathesis of dinickel(II) complex LNiBr (1; L is a dinucleating pyrazolate ligand with two β-diketiminato chelate arms) with Na(OCP) ⋅ (dioxane) yielded LNi(PCO) (2) with a P-bridging phosphaethynolate. Further reaction of 2 with benzyl isocyanide or with an N-heterocyclic carbene (NHC) triggered decarbonylation and gave LNi(PCN-CHPh) (3) and LNiP(NHC) (4) with P-bridging cyanophosphide and NHC-phosphinidenide, respectively. Electronic structure analysis indicated a μ-η : η binding mode of the PCO anion between the two Ni ions in 2, which is even more pronounced for the [PCN(-CHPh)] anion in 3.

View Article and Find Full Text PDF

The carbene-stabilised beryllium Grignards [(CAAC)BeBrR] (R = CAACH 1a, Dur 1b; CAAC/H = 1-(2,6-dipropylphenyl)-2,2,4,4-tetramethylpyrrolidin-2-yl/idene; Dur = 2,3,5,6-tetramethylphenyl) undergo salt metathesis with various pseudohalide salt precursors. Whereas with [NaNCS] the thiocyanato Grignards [(CAAC)Be(NCS)R] (R = CAACH 2a, Dur 2b) are obtained selectively, salt metatheses with [Na(OCP)(dioxane)] and [K(OCN)] are fraught with side reactions, in particular scrambling of both neutral and anionic ligands, leading to complex product mixtures, from which the first examples of beryllium phosphaethynolate Grignards [(thf)(CAACH)Be(OCP)] (3) and [(CAAC)Be(OCP)R] (R = CAACH 4a, Dur 4b), as well as the isocyanate-bridged hexamer [(CAAC)BrBe(1,3-μ-OCN)] (7) were determined as the main products. The complexity of possible side reactions is seen in complex 5, a byproduct of the salt metathesis of 1b with [Na(OCP)(dioxane)], which hints at radical redox processes, OCP homocoupling, OCP coupling with CAAC, as well as OCP insertion into the Be-R bond.

View Article and Find Full Text PDF

Reaction of the ruthenium carbene complex Cp*(IPr)RuCl () (IPr = 1,3-bis(Dipp)imidazol-2-ylidene; Dipp = 2,6-diisopropylphenyl) with sodium phosphaethynolate (NaOCP) led to intramolecular dearomatization of one of the Dipp substituents on the Ru-bound carbene to afford a Ru-bound phosphanorcaradiene, . Computations by DFT reveal a transition state characterized by a concerted process whereby CO migrates to the Ru center as the P atom adds to the π system of the aryl group. The phosphanorcaradiene possesses ambiphilic properties and reacts with both nucleophilic and electrophilic substrates, resulting in rearomatization of the ligand aryl group with net P atom transfer to give several unusual metal-bound, P-containing main-group moieties.

View Article and Find Full Text PDF

The involvement of the 2-phosphaethynolate anion species with ambident nucleophilic properties serves as an essential protocol for synthesizing oxygen-bound or phosphorus-bound complexes. This work mainly describes the synthesis and characterization of U, Th, and Ti phosphaethynolate complexes featuring a preferential O-coordination fashion. Among these complexes, the first examples of a Ti(IV)-OCP complex 3A, Th(IV)-OCP complex 3B, and U(IV)-OCP complex 3C were assembled by a salt metathesis reaction between M(Trapen)(Cl) (M = Ti, Th, U) and NaOCP(dioxane) and were all crystallographically characterized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!